Тема ПЛАНИМЕТРИЯ
Геометрические неравенства
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Разделы подтемы Геометрические неравенства
Подтемы раздела планиметрия
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#81389

В выпуклом четырёхугольнике ABCD  углы B  и C  равны. Докажите, что

|AB− CD |<AD
Показать доказательство

Предположим, что прямые AB  и CD  пересекаются в точке P.  Тогда треугольник PBC  — равнобедренный, откуда следует, что |AB − CD |=|PA − P D| (это не зависит от того, с какой стороны пересекаются прямые AB  и CD  ). По неравенству треугольника получаем, что |P A− PD|< AD.  Осталось разобрать случай параллельности AB  и CD.  В этом случае углы B  и C  равны по  ∘
90 .  Опустим перпендикуляр AT  на прямую CD.  Тогда |AB − CD|= DT < AD,  что и требовалось доказать.

Ошибка.
Попробуйте повторить позже

Задача 2#81388

В треугольнике ABC  взята произвольная точка O.  Докажите, что AB +BC > AO +OC.

Показать доказательство

Продлим AO  до пересечения с BC  в точке X.  Заметим, что AO + OC < AX +CX,  потому что AX = AO+ OX  и OX +CX  >OC.  Аналогично AB +BC > AX +CX.  Следовательно, AB + BC >AO + OC.

Ошибка.
Попробуйте повторить позже

Задача 3#81387

Докажите, что в любой трапеции разность длин боковых сторон меньше разности длин оснований.

Показать доказательство

Отметим на AD  такую точку C ,
 1  что CC  ∥AB.
  1  Получили параллелограмм ABCC  .
     1  То есть AB = CC
       1  и BC = AC .
       1  По неравенству для треугольника DCC1  имеем: C1D > CC1− CD  (пусть не умаляя общности CC1 >CD  ). Осталось заметить, что C1D = AD − BC  и CC1− CD = AB − CD.  Получили требуемое. Для трапеции, у которой тупые углы не при одном основании, работает аналогичное построение.

Ошибка.
Попробуйте повторить позже

Задача 4#81386

Докажите, что для любого прямоугольника сумма расстояний от произвольной точки плоскости до трех его вершин больше расстояния от этой точки до четвертой вершины.

Показать доказательство

Заметим, что AO <AC + OC  по неравенству треугольника AOC.  Также BO + OD > BD  по неравенству треугольника OBD.  Осталось заметить, что AO < AC+ OC = BD +OC < BO + OD +OC,  что и требовалось.

Ошибка.
Попробуйте повторить позже

Задача 5#81385

В треугольнике ABC  отметили точку E  на отрезке BC.  Докажите, что AE  меньше хотя бы одного из отрезков AB  и AC.

Показать доказательство

Предположим противное, пусть AE ≥ AB  и AE ≥AC.  Как известно, в треугольнике против большей стороны лежит больший угол. Получается, что ∠ABC  =∠ABE  >∠AEB  и ∠ACB  =∠ACE  >∠AEC.  Если сложить неравенства, то получим, что                  ∘
∠ABC + ∠ACB > 180,  пришли к противоречию.

Ошибка.
Попробуйте повторить позже

Задача 6#79113

На сторонах AB  и AC  треугольника ABC  выбраны точки D  и E  соответственно, так что AD = AE.  Докажите, что из отрезков BE, CD  и BC  можно составить треугольник.

Показать доказательство

PIC

Достаточно проверить выполнение трех неравенств треугольника. Пусть F  — точка пересечения отрезков BE  и CD.

Очевидно, BE +DC > BF + FC >BC.

Проверим второе неравенство треугольника: BE + BC >CD.  Для этого прибавим к частям этого неравенства равные отрезки AE  и AD,  т. е. проверим, что AE + BE +BC > AD + CD.  Действительно, по неравенству треугольника AE + BE > AB  и BD + BC > CD;  кроме того, AB = AD + BD.  Значит,

AE + BE +BC > AB + BC =AD + BD + BC >AD + CD

что и требовалось.

Аналогично доказывается третье неравенство треугольника CD +BC > BE.

Ошибка.
Попробуйте повторить позже

Задача 7#75197

В четырёхугольнике ABCD  углы A  и C  — не острые. На сторонах AB,BC,CD  и DA  отмечены точки K,L,M  и N  соответственно. Докажите, что периметр четырёхугольника KLMN  не меньше удвоенной длины диагонали AC.

Подсказки к задаче

Подсказка 1

Попробуем доказать, что отрезок, соединяющий середины противоположных сторон, не больше полусуммы противоположных сторон!

Показать доказательство

Лемма. Пусть M  и N  — середины сторон AB  и CD  четырехугольника ABCD  . Тогда MN ≤ (AB +CD )∕2.

Доказательство. Пусть K  — середина диагонали AC.  Тогда MK = AB∕2,KN = CD∕2.  По неравенству треугольника для треугольника MNK  имеем:

MN ≤ MK  +KN

после подстановки полученных равенств:

MN ≤ AB∕2+ CD ∕2

что завершает доказательство.

Вернемся к решению задачи. Пусть P  и Q  — середины сторон KN  и LM.  По лемме PQ ≤ (KL + MN )∕2.  Ясно, что длина медианы, проведенной из вершины при неостром угле, не превосходит половины стороны, к котором она проведена, следовательно AP ≤ KN ∕2  и LM ∕2.  Осталось заметить, что по неравенству ломанной верно неравенство

AC ≤ AP +P Q+ QC

Подставляя полученные неравенства имеем

AC ≤ KN ∕2+(KL + MN )∕2+ LM ∕2

домножив данное неравенство на 2,  получим требуемое.

Ошибка.
Попробуйте повторить позже

Задача 8#75196

Дан треугольник ABC,  в котором AB + AC > 3BC.  Внутри этого треугольника отмечены точки P  и Q  такие, что ∠ABP  =∠P BQ =∠QBC  и ∠ACQ  =∠QCP  =∠P CB.  Докажите, что AP +AQ > 2BC.

Подсказки к задаче

Подсказка 1

Хотим оценить сумму - так попробуем оценить каждый ее член! Какие неравенства можно к ним применить?

Показать доказательство

PIC

По неравенству треугольника для треугольника ABP  имеем:

AP >AB − BP

Аналогично

AQ >AC − CQ

Складывая полученные неравенства имеем

AP + AQ >AB + AC − (BP + CQ)> 3BC − (BP +CQ )

Осталось показать, что BP + CQ < BC.  Пусть R  — точка пересечения прямых BQ  и CP,P′ — образ точки P  при симметрии относительно прямой BR,Q′ — образ точки Q  при симметрии относительно прямой CR.  Тогда достаточно показать, что BP ′+CQ ′ <BC,  что эквивалентно

     ′      ′
∠BRP  +∠CRQ  < ∠BRC (*)

Пусть ∠ABC = 3β,∠ACB = 3γ.  Тогда

  ′                             ′
∠P RB = ∠PRB = γ+β = ∠CRQ = ∠CRQ

Таким образом, неравенство (*) имеет вид

2(β+ γ)< 180 − (β+ γ)

Наконец,

3(β+ γ)<180

что верно, т.к.

3(β +γ)= ∠ABC = 3β+ ∠ACB = 180∘− ∠A

Ошибка.
Попробуйте повторить позже

Задача 9#74758

На столе лежат несколько часов. Докажите, что в некоторый момент сумма расстояний от центра стола до концов минутных стрелок будет больше, чем сумма расстояний до центров часов если:

(a) все часы идут правильно;

(b) каждые часы идут со своей постоянной скоростью.

Показать доказательство

(a) Пусть Ai  и Bi   – положения конца минутных стрелок часов с номером i  в моменты t  и t+ 30  минут, Oi   – центр i  -х часов, а O   – центр стола.

Лемма.       OA+OB
OOi ≤ --i2--i  для любого i.

Доказательство. Рассмотрим треугольник с вершинами O,Ai,Bi.  Ясно, что OOi   – его медиана. Как известно, медиана треугольника не превосходит полусуммы прилежащих к ней сторон (достаточно достроить треугольник до параллелограмма OAiO′Bi  и применить неравенство треугольника к OAiO′ ).

Понятно, что t  можно подобрать так, чтобы для некоторого i  точки Ai  и Bi  не лежали на прямой OiO,  т. е. по крайней мере одно из n  неравенств становится строгим. Сложим все эти неравенства, получим

2OO1 +...+2OOn < OA1+ OB1 +...+OAn + OBn.

Ясно, что в таком случае либо OO1 +...+ OOn < OA1+ ...+ OAn,  либо
OO1 + ...+OOn < OB1 +...+OBn.  Тогда сумма расстояний от центра стола до концов минутных стрелок будет гарантированно больше, чем сумма расстояний до центров часов либо в момент t  , либо в момент t+30.

(b) Зафиксируем момент времени 0 – начало отсчета. Рассмотрим произвольные часы (с номером i  ). Из леммы в пункте a  ), в частности, следует, что среднее за один час расстояние от конца минутной стрелки до O  строго больше OOi.  Докажем, что существует момент времени Ni  такой, что для любого t≥Ni  среднее расстояние от конца минутной стрелки до O  за время от 0 до t  больше, чем OOi.  Пусть mi   – время, которое занимает один полный оборот i  -ых часов. Введем еще переменную 0≤ ti ≤ mi.  Пусть xi   – разность между средним расстоянием от конца минутной стрелки до O  за один полный оборот и OOi  (по замечанию, xi > 0  ). И, наконец, пусть sti  есть среднее расстояние от конца минутной стрелки до O  за время от 0 до ti.  Нетрудно понять, что ti(sti − OOi )  ограничено снизу одной и той же константой для всех 0 ≤ti ≤mi.  Обозначим ее как ai :ai ≤ ti(sti − OOi)  (при этом ai  вполне может быть отрицательным). Например, по неравенству треугольника ясно, что |st − OOi|≤
 i длины минутной стрелки, поэтому ti(st − OOi)
    i  больше либо равно, чем − mi ⋅длина минутной стрелки.

С помощью введенных обозначений, легко выразить разность между средним расстоянием за время от 0 до t  от конца минутной стрелки до O  и OO
  i  для произвольного t:

xi⋅mi ⋅[mt]+ (t− mi⋅[ tm-])(st−m ⋅[ t-]− OOi)
-------i-----------i-----i-mi------.
                 t

Объясним эту формулу. Разобьем время t  на максимальное число полных оборотов ([ tmi]  ) и то что осталось – интервал от mi⋅[mti]  до t.  Поскольку xi   – разность между средним расстоянием от конца минутной стрелки до O  за один оборот часов и OOi,  то за [ tmi]  оборотов средняя разность будет равна xi⋅[m t ],
     i  а суммарная разность xi⋅mi⋅[m t ]
        i  . Ясно, что среднее расстояние от конца минутной стрелки до O  за время от 0 до t− mi ⋅[m t]
       i  равно среднему расстоянию за время от mi⋅[mt]
     i  до t,  поэтому средняя разность расстояния от конца минутной стрелки до O  и OOi  за это время равно st−m ⋅[-t]− OOi,
   i mi  а суммарное – (t− m ⋅[ t])(s    t − OO ).
     i mi   t− mi⋅[mi]    i  Итак, в числителе стоит суммарная разность за время t,  и ее мы делим на t,  чтобы получить среднюю.

Поскольку 0≤ t− mi ⋅[m ti]≤ mi,  по замечанию второе слагаемое в числителе ограничено снизу. А значит, если [m ti]  является достаточно большим числом, то первое слагаемое будет больше второго по модулю, и числитель будет являться положительным числом. Именно это и необходимо, чтобы среднее расстояние за время от 0 до t  от конца минутной стрелки до O  было больше OOi.

Вернемся к нескольким часам. Выберем наибольшее из всех Ni  и обозначим его N.  Рассмотрим теперь разность суммы расстояний от концов минутных стрелок всех часов до O  и OO1+ ...+ OOn.  Рассмотрим среднее этой величины за время N  . Оно является суммой по всем i  разности между средним расстоянием (за время N  ) от конца стрелки до O  и OOi.  По выбору N,  все слагаемые этой суммы положительные. Итак, у нас есть некоторая величина, среднее значение которой положительно – значит и в некоторой точке значение этой величины положительно. Эта некоторая точка и является моментом времени, в котором сумма расстояний от концов минутных стрелок до центра стола больше, чем сумма расстояний от центров часов до центра стола. Именно это и требовалось получить.

Ошибка.
Попробуйте повторить позже

Задача 10#74608

Точки D  и E  делят сторону AC  треугольника ABC  на три равные части. Докажите, что BD + BE <AB + BC.

Показать доказательство

PIC

Вспомним известное неравенство. В треугольнике медиана меньше полусуммы сторон, к которым она не проведена. Чтобы его доказать, надо просто удвоить эту медиану и написать неравенство треугольника.

Теперь к задаче. Применим это неравенство к медианам BD  и BE  треугольников ABE  и DBC :2BD < AB +BE, 2BE <BD + BC.  Осталось сложить эти неравенства и получить требуемое.

Ошибка.
Попробуйте повторить позже

Задача 11#71293

Точка M  лежит внутри острого угла. Постройте на сторонах этого угла точки A  и B  , для которых периметр треугольника AMB  был бы наименьшим.

Показать доказательство

Обозначим вершину угла через O  . Отразим точку M  относительно сторон угла, обозначив полученные две точки через N  и K  .

PIC

Рассмотрим произвольные точки X  и Y  на сторонах угла. Заметим, что в силу симметрии XM  =XN  , Y K = YM  . Поэтому периметр треугольника XMY  равен длине ломаной NXY K  . Длина этой ломаной не меньше длины отрезка NK  , и равенство возможно только когда точки X  и Y  лежат на отрезке NK  . Поэтому в качестве точек A  и B  таких, чтобы периметр треугольника AMB  был наименьшим, необходимо выбрать точки пересечения отрезка NK  со сторонами угла.

_________________________________________________________________________________________________________________________________________________________________________________

Замечание.

Условие, что исходный угол острый, важно: если бы ∠O  был тупым, то построенный отрезок NK  не пересекался бы со сторонами угла, а если бы ∠O  был прямым, то пересекался бы в точке O  . В качестве упражнения докажите, что в обоих этих случаях в качестве точек     A  и B  необходимо выбрать точку O  , таким образом, периметр вырожденного треугольника OMO  является наименьшим из возможных.

Ошибка.
Попробуйте повторить позже

Задача 12#71292

На окружности диаметра 2 выбраны 100  точек A
 1  , A
 2  , …, A
 100  . Докажите, что на окружности можно выбрать точку M  так, что

MA1 + ...+MA100 ≥ 100
Показать доказательство
PIC

Выберем точку M  на окружности, и отметим также диаметрально противоположную ей точку   ′
M , причем отметим M  так, чтобы ни M  , ни   ′
M не совпадала ни с одной из отмеченных ранее точек Aj  (так можно сделать, ведь на окружности отмечено лишь конечное число точек, то есть конечное число запретов, меж тем как в качестве M  мы можем выбрать любую из бесконечного числа точек).

Для одной из выбранный точек Ai  рассмотрим два отрезка MAi  и   ′
M Ai  . Заметим, что по неравенству треугольника      ′
MAiM сумма        ′       ′
MAi + M Ai > MM = 2  , так как     ′
MM  — диаметр окружности. Запишем аналогичные неравенства для всех Ai  и сложим их. Получим неравенство

(MA1 + MA2 + ...+MA100 )+(M ′A1+ M ′A2 +...+ M ′A100)> 200,

значит, одна из двух скобок в левой части больше 100.  Таким образом, в качестве искомой точки подойдет либо M  , либо диаметрально противоположная ей точка   ′
M .

Ошибка.
Попробуйте повторить позже

Задача 13#71290

Докажите, что в параллелограмме против большего угла лежит большая диагональ.

Показать доказательство
PIC

Обозначим параллелограмм через ABCD  , и пусть ∠A< ∠B  . Продлим отрезок AB  за точку B  на свою длину, обозначим полученную точку через K  . Тогда DC =AB = BK  , и DC ∥ BK  . Значит, DCKB   — тоже параллелограмм, в частности, BD = KC  . Так как ∠A< ∠B  , а их сумма равна    ∘
180 , то         ∘
∠ABC > 90 . Поэтому, если провести через B  серединный перпендикуляр к AK  , то относительно этого серединного перпендикуляра точки A  и C  лежат по разные стороны. Отсюда AC > CK = BD.

Ошибка.
Попробуйте повторить позже

Задача 14#71287

Докажите, что медиана меньше полусуммы сторон, между которыми она заключена.

Показать доказательство
PIC

Сделаем с медианой самое естественное, что можно сделать: продлим на свою длину. Обозначим получившуюся точку через P  . Тогда ABCP   — параллелограмм, так как его диагонали делятся точкой пересечения пополам. Значит, AB = CP  . При этом по неравенству треугольника

AB +BC = CP + BC >BP

AB-+-BC-
   2    > BM

Замечание. Вообще, те же рассуждения можно записать через векторы. На самом деле как раз из рассуждений выше следует, что

      −→   −−→
−B−M→ = AB+-BC--
         2

Ошибка.
Попробуйте повторить позже

Задача 15#69112

В треугольнике ABC  на стороне AB  выбраны точки K  и L  так, что AK = BL,  а на стороне BC  — точки M  и N  так, что CN = BM.  Докажите, что KN + LM ≥ AC.

Подсказки к задаче

Подсказка 1

Давайте обратим внимание на схожесть расположения каждого из отрезков нашего неравенства. Каждый из них включен в треугольник с вершиной B. Попробуйте выразить вектора AC, KN и LM через вектора выходящие из вершины B.

Подсказка 2

Не просто же так в условии сказано, что BL=KA, а BM=NC. Подумайте, почему эти же равенства будут верны и в векторном виде и подставьте их в выражения, которые мы находили ранее. Подумайте, как теперь мы можем связать вектора AC, KN и LM.

Подсказка 3

Если до этого вы всё сделали правильно, то должны были получится векторные равенства: KN = BN - BK, LM = NC - KA. Если сложить два векторных равенства, то получим KN+LM=(BN+NC)-(BK+KA)=BC-BA=AC. Подумайте, почему данное векторное равенство доказывает неравенство из условия.

Показать доказательство

Рассмотрим для определенности конфигурацию, изображенную на рисунке

PIC

Тогда имеем следующие равенства:

(
|||  −A→C =−B−→C − −B→A
{  −−K→N = −−B→N − −−B→K
|||(  −−→   −−→   −→
   LM = BM − BL

Поскольку −−→   −−→
BM = NC,  а −→   −−→
BL = KA,  то сложив второе и третье равенства получим

−−→   −−→   (−−→  −−→)   (−−→   −→ )  −−→   −→  −→
KL + LM =  BN +BM   −  BK + BL  =BC − BA =AC

Следовательно

|−A→C |= |−−L→M +−K−N→|≤ |−L−→M |+ |−K−→N |

Заметим, что при таком решении не существенно, как расположены точки K, L, M  и N.

Ошибка.
Попробуйте повторить позже

Задача 16#72977

В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.

Источники: ММО-2022, 11.4 (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

Можно изобразить трапецию и задать направления жучкам. Понятно, что хочется, чтобы жучки встретились на AC. А что происходит с жучками, когда один из них проходит целый круг?

Показать доказательство

Пусть в равнобедренной трапеции ABCD  с основаниями AB > CD  проведена диагональ AC,  так что первый жук ползает по циклу A → C → D → A,  второй — по циклу A → B → C → A.

PIC

Рассмотрим моменты времени, в которые первый жук оказывается в точке A.  За время обхода первым жуком полного цикла из A  снова в A  второй жук сдвигается по своему циклу на AB − CD  в одну и ту же сторону. Поскольку

AB − CD <BC + AC − CD = AD + AC − CD < AC +CD + AC − CD =2AC,

при таких сдвигах в один из рассматриваемых моментов времени второй жук окажется на расстоянии меньше 2AC  до точки A  по ходу своего движения, а значит, встретится с первым жуком на диагонали AC.

Ошибка.
Попробуйте повторить позже

Задача 17#31837

На диагонали AC  выпуклого четырехугольника ABCD  отмечена точка E  . Известно, что ∠BAC  =∠BCA  =∠DAC  = 30∘,AC ⊥DE  u AE = 2CE  . Докажите, что AD +AE > 2BD  .

Показать доказательство

PIC

Отметим на отрезке AC  точки X  и Y  так, что ∠ABX  = ∠CBY = 30∘ , чтобы получить AX = XB  и CY = YB  . Причём как внешние углы ∠BXY  = 60∘ и ∠BY X =60∘ . Следовательно, треугольник XBY  правильный, а тогда AX = XY = YC = BX = BY  . Так как AE = 2CE  , то получаем, что точка Y  совпадает с E  , поэтому AE = 2EB  . Кроме того, AD = 2DE  , как гипотенуза и меньший катет прямоугольного треугольника с углом 30∘ . Итак, AD +AE = 2(DE +EB )> 2BD  по неравенству треугольника, что и требовалось.

Ошибка.
Попробуйте повторить позже

Задача 18#31356

В равнобедренном треугольнике ABC  AB = BC  и ∠ABC = 20∘.  Докажите, что 3AC > AB  .

Подсказки к задаче

Подсказка 1

Угол в 20 градусов — так себе угол, нам больше нравятся углы в 30, 45, 60 или 90 градусов.. Как бы из угла 20 градусов сделать один из этих углов?

Подсказка 2

Давайте попробуем сделать угол в 60 градусов! Для этого отсимметричим треугольник АВС относительно ВС, а потом еще раз, относительно новой полученной стороны! Вспоминаем, что известно про треугольники с углом 60

Подсказка 3

Хм, теперь из оснований равнобедренного треугольника образовалась ломаная! Что бы с ней сделать...

Показать доказательство

Повернём ΔABC  вокруг точки B  против часовой стрелки на 20 градусов, получим ΔCBX  . Сделаем такой же поворот для ΔCBX  , получим ΔXBY  .

PIC

Заметим, что ΔABY  — равносторонний. Запишем неравенство для ломаной ACXY  :

AB = AY <AC + CX + XY = 3AC

Ошибка.
Попробуйте повторить позже

Задача 19#31354

Внутри прямого угла с вершиной O  взята точка C  , а на его сторонах — точки A  и B  . Докажите, что 2OC < AC+ BC +AB.

Подсказки к задаче

Подсказка 1

Так, снова встречаем неравенство на странные отрезки, которые между собой никак не соотносятся. Мы знаем несколько известных неравенств на отрезки - например, неравенство треугольника. Тогда попробуем его здесь найти и использовать

Подсказка 2

Для этого нам пригодится создать на картинке отрезок длинной 2ОС, пока его нет. Давайте просто продлим за точку О отрезок ОС до точки ОС1, так, что ОС1 = ОС. Теперь длина СС1 = 2ОС. Ищем треугольник, для которого можно написать неравенство! (мы же предварительно нарисовали картинку и отметили там все отрезки, о которых идет речь, да?)

Подсказка 3

Например, можно для треугольника АСС1. То есть, если мы докажем, что АС1<= АВ + ВС, то получим неравенство из условия! Осталось это доказать, и задача решена😏

Показать доказательство

Первое решение.

PIC

Удвоим отрезок CO  за точку O  и получим отрезок CC ′ длины как в левой части искомого неравенства. Нужно доказать, что его длина меньше периметра треугольника ABC  .

Отразим также точку B  относительно точки O  и обозначим полученную точку за D  . В силу осевой симметрии точек B  и D  относительно AO  получаем AB = AD  . Из равенства треугольников BOC  и DOC ′ по двум сторонам (из построения) и углу между ними (как вертикальные) имеем BC = DC′ . Наконец, из неравенства ломаной CC ′ < CA+ AD + DC′ = CA +AB + BC  получаем требуемое.

Замечание. Точки A,D,C′ необязательно лежат на одной прямой.

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение.

PIC

Отразим точку C  относительно сторон угла AOB  , получим точки C′ и C ′′ .

По построению стороны угла являются серединными перпендикулярами к сторонам CC ′ и CC ′′ , а в силу того, что угол между сторонами угла прямой, угол C′CC ′′ между перпендикулярами к ним тоже является прямым. Поэтому точка O  лежит на гипотенузе C′C′′ треугольника C′CC′′ и является центром описанной около него окружности, а отрезок CO  — её радиусом R  .

Выражение в правой части неравенства превращается в длину ломаной C′A+ AB +BC ′′ , которая больше длины отрезка C ′C′′ =2R = 2CO.

______________________________________________________________________________________________________________________________________________________

Третье решение

Используем прямоугольный треугольник AOB :  пусть M  — середина AB  , тогда OM  = AB2  . В связи с этим нужно доказать OC < OM + BC+A2C-.

PIC

Запишем неравенство треугольника для ΔOMC  : OC ≤OM  +MC  . Осталось доказать      BC+AC-
MC <   2  . Но это известное неравенство медианы, применённое для ΔABC  .

В итоге

                    BC +AC   AB + BC +AC
OC ≤OM  +MC  < OM + ---2---= ------2-----

Ошибка.
Попробуйте повторить позже

Задача 20#31353

Точки D  и E  делят сторону AB  треугольника ABC  на три равные части. Докажите, что CD + CE <AC + BC  .

Подсказки к задаче

Подсказка 1

Заметим, что у нас есть несколько треугольников на картинке и несколько проведенных в них медиан (например, CD - медиана ACE.) Как мы можем этим воспользоваться для доказательства неравенств?

Подсказка 2

Да, при наличии медианы мы всегда можем вспомнить о неравенство на стороны треугольника и медиану! Например, 2CD < AC + CE. Попробуйте, используя такие неравенства для имеющихся треугольников, теперь доказать требуемое в задаче.

Показать доказательство

PIC

Запишем для треугольника CAE  неравенство на медиану:

2CD < AC +CE

Точно такое же неравенство можно написать для треугольника BCD  :

2CE < BC +CD

Сложим эти два неравенства:

2CD +2CE < AC+ CE + BC +CD,

CD + CE < AC+ BC
Рулетка
Вы можете получить скидку в рулетке!