Тема САММАТ (Самарская математическая олимпиада)
Алгебраические текстовые задачи на САММАТе
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела саммат (самарская математическая олимпиада)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#69821

Пешеход, велосипедист и мотоциклист едут по шоссе в одну сторону с постоянными скоростями. В тот момент, когда мотоциклист догнал велосипедиста, пешеход обгонял их на 4 км. В тот момент, когда велосипедист догнал пешехода, мотоциклист обгонял их на 6 км. На сколько километров велосипедист отставал от мотоциклиста в тот момент, когда мотоциклист обгонял пешехода?

Источники: САММАТ-2023, 11.2 (см. sammat.samgtu.ru)

Подсказки к задаче

Подсказка 1

Итак, перед нами задачка на одновременное движение нескольких объектов. Можно было бы записать систему уравнений и пытаться как-то решать с её помощью, но есть еще один очень интересный способ. Давайте построим график S(t), да-да, именно так, как мы делаем это в физике.

Подсказка 2

Пускай график перемещения мотоциклиста пересекается с графиком велосипедиста в точке A, а график пешехода - в точке D. А графики перемещения велосипедиста и пешехода пересекаются в точке E. Пускай точка B - точка на графике пешехода в момент, когда мотоциклист встретился с велосипедистом, C - точка на графике велосипедиста в момент, когда мотоциклист встретился с пешеходом, а F - точка на графике мотоциклиста в момент, когда велосипедист встретился с пешеходом. Что мы можем сказать по данному рисунку про пары треугольников △ABE, △CDE и △ABD, △FDE?

Подсказка 3

Абсолютно верно, △ABE подобен △CDE, а △ABD подобен △FDE. Так же из условия нам известны расстояния AB и EF. Теперь воспользуйтесь подобиями и длинами расстояний, чтобы найти CD.

Показать ответ и решение

PIC

Построим схематично график движения.

По условию задачи AB = 4  км, EF = 6  км, а требуется найти CD.  Очевидно, что треугольники ABD  и EDF  подобны и их коэффициент подобия k = 4= 2.
    6  3  С другой стороны, треугольники ACD  и AEF  также подобны и их коэффициент подобия равен

--2x--= 2
2x+ 3x  5

Значит, CD =6 ⋅ 2= 2,4.
       5

Ответ: 2,4

Ошибка.
Попробуйте повторить позже

Задача 2#69863

В уравнении ax= b  параметры a  и b  выбираются наудачу соответственно из сегментов 0≤ a≤ m,0≤ b≤n.  Какова вероятность того, что корень этого уравнения будет больше единицы при условии, что m,n,a,b  — натуральные числа?

Источники: САММАТ-2020 (см. sammat.samgtu.ru)

Подсказки к задаче

Подсказка 1

Что значит, что корень больше 1? И нужно ли нам рассматривать два случая в задаче?(ведь m может быть больше n, но может быть и наоборот)

Подсказка 2

Да, если корень больше единицы - это значит, что b больше a! Тогда давайте зададим координатную плоскость, где по одной оси будем откладывать все числа от 0 до n, а на другой - все числа от 0 до m! Тогда, если m ≤ n, то какие точки нам подойдут?

Подсказка 3

Верно, нам подойдут все точки(координаты которых натуральные числа), которые находятся выше прямой m = n. Тогда, точек которые не подходят под условие будет таких ровно m*(m+1)/2. Осталось найти вероятность и разобраться со случаем когда n > m!

Показать ответ и решение

Первое решение.

Корень уравнения ax = b  больше единицы при условии b> a.  Будем рассматривать параметры a  и b  как прямоугольные декартовы координаты точки плоскости(a  — ось абцисс, b  — ось ординат). Поскольку a  и b  натуральные a >0, b> 0  и поэтому число всех возможных испытаний равно m⋅n.

PIC

Если m ≤n  то число исходов, не благоприятствующих рассматриваемому событию, равно

1+ 2+ 3+ ...+(m − 1)+ m = m(m-+1)
                           2

Значит, рассматриваемому событию благоприятствует

    m-(m-+-1)
mn−    2

исходов испытания, то есть m-
2 (2n− m − 1)  исходов. Поэтому вероятность p  находим из формулы

   2n− m − 1
p= ---2n---

PIC

Если m <n  и m > 2,  то число исходов, благоприятствующих рассматриваемому событию, равно

                   n(n−-1)
1+2+ 3+ ...+ (n − 1)=   2

Следовательно,    n− 1
p= -2m--

Итого получаем 2n−-m-− 1,
   2n  если m ≤n  и n−-1,
2m  если m > n.

Второе решение.

Вероятность каждого значения a ∈{1,...m} равна 1m,  вероятность каждого значения b  по аналогии будет 1n.  Нам требуется найти вероятность того, что b> a

   min∑{m,n}    ∑n       1  min{∑m,n}
p=        p(a)     p(b)= nm-      (n− a)=
     a=1     b=a+1          a=1

  min{m,n}⋅n− min{m,n}(min{m,n}+1)
= ------------nm-----2--------

Если m ≤n,  то получаем

     m(m+1 )
mn-−---2---= 2n−-m−-1
    nm          2n

Иначе

n2− n(n+1)  n − 1
---nm-2--= -2m-
Ответ:

 qn− q(q+21),
   nm  где q = min{m,n}

Рулетка
Вы можете получить скидку в рулетке!