Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Разделы подтемы Изумруд
Подтемы раздела изумруд
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#79618

Вписанная окружность треугольника ABC  с центром в точке I  касается сторон BC,AC, AB  соответственно в точках D,E,F  . Точки M  и N  симметричны вершине A  относительно прямых DE  и DF  соответственно. Окружности, построенные на отрезках IE  и IF  как на диаметрах, вторично пересекаются в точке K  . Докажите, что K  лежит на прямой MN  .

Источники: Изумруд-2024, 11 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Хочется с самого начала понять, что за точка K нам дана. Заметим, что одна сторона у наших треугольников одинаковая на будущее. К тому же из условия вытекает, что какие-то углы прямые. Тогда чем же является точка K на нашей картинке?

Подсказка 2

Верно, точка K лежит на отрезке FE и является серединой, так как FIE равнобедренный. Теперь когда объекты на картинке так или иначе связаны, то можно вернуться к вопросу задачи. Что если посмотреть на четырёхугольник NFME. Чем в нём является K? Если же K будет лежать на NM, то что должно выполняться?

Подсказка 3

Верно, K середина диагонали и, если NFME будет параллелограммом, то K как раз будет лежать на NM. Осталось доказать это. Причём мы знаем, что NF =AF = AE = EM, как отрезки касательных из одной точки и симметрии. Остаётся только ввести стандартно углы треугольника, посчитать немного, и победа!

Показать доказательство

Проведем FE  . Так как окружности построены на диаметрах,

                ∘
∠F KI =∠EKI = 90

Следовательно, точка K  — середина отрезка F E  , так как FI =IE  и KI  — высота равнобедренного треугольника FIE.

Проведем NF  и EM  . AF = AE  как отрезки касательных, и в силу симметрии получаем NF  =AF = AE = EM.

Обозначим углы ∠ABC  =2β, ∠BCA = 2γ.

PIC

Тогда ∠BF D = ∠BDF = 90∘ − β  . И ∠AF N =180∘− 2β  . Следовательно, ∠NF B = 2β  , и тогда BC||NF.

Аналогичным счетом углов показываем, что ∠CEM  = 2γ  и BC||EM.

NF||EM, NF  =EM

Следовательно, NFME  — параллелограмм. В нем K  — середина диагонали FE  . Диагонали параллелограмма точкой пересечения делятся пополам, поэтому K  — середина NM.

Ошибка.
Попробуйте повторить позже

Задача 2#79617

Фигура оборотень бьёт все клетки, находящиеся от неё через клетку слева, справа, сверху или снизу, а также бьёт клетку, на которой стоит. Какое наименьшее количество оборотней необходимо поставить на клетчатую доску 8× 8  , чтобы эти фигуры били все клетки доски?

Источники: Изумруд-2024, 11 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Оборотни на каких множествах клеток точно друг друга не бьют? Попробуем найти такие участки (множества клеток), на которых мы сможем оценить количество оборотней.

Подсказка 2

Оборотни, стоящие на квадрате 2*2, друг друга точно не бьют. Как, исходя из этого соображения, найти 4 множества клеток, которые замещают всю доску и в которых мы сможем оценить количество оборотней?

Подсказка 3

Рассмотрите множества клеток, получаемые всевозможными путями оборотня из каждой клетки углового квадрата 2*2. В каждом таком множестве по 16 клеток. Осталось лишь оценить количество оборотней в каждом таком множестве!

Показать ответ и решение

Раскрасим клетки доски в 4  цвета следующим образом: все клетки, куда может прийти оборотень из, не умаляя общности, левой нижней угловой клетки, покрасим в первый цвет. Сдвигами этого множества клеток вправо, вверх и вправо вверх получаем 4  множества клеток.

PIC

Рассмотрим одно из них. Чтобы все клетки были побиты, нужно как минимум 4  оборотня, так как каждый из них бьет не более 5  клеток, и, следовательно, 3  и меньше оборотней бьют максимум 15  клеток. Пример расстановки 4  оборотней: выделим 4  непересекающихся Т-образных фигур, в каждой из которых отметим по одному оборотню.

И так как оборотень, стоящий на клетке из одного множества, не может дойти до клеток из трех других, получаем, что всего нужно как минимум 16  оборотней.

Ответ: 16

Ошибка.
Попробуйте повторить позже

Задача 3#79616

Натуральные числа от 1 до 8 расставили по кругу так, что каждое число делится на разность своих соседей. Известно, что числа 2 и 5 стоят рядом. Докажите, что числа 4 и 6 стоят рядом.

Источники: Изумруд-2024, 11 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Будем отталкиваться от того, что нам уже дано. Какие числа можно поставить рядом с 2? Какие - рядом с 5?

Подсказка 2

Рядом с 2 может стоять одно из чисел 3, 4 ,6, 7. Рядом с пятеркой - 1, 3, 7. Переберем случаи! От какого еще числа удобно отталкиваться?

Подсказка 3

Помним, что соседями единицы могут быть только последовательные числа.

Показать доказательство

Рядом с 2  может стоять одно из чисел 3,4,6,7  . Рядом с пятеркой — 1,3,7  . Заметим также, что соседями единицы могут быть только два последовательных числа. Переберем всевозможные варианты для соседа двойки:

1) Рядом с 2 стоит 3. Тогда рядом с 3 может стоять только 1. Ее сосед — это только 4 и рядом с 4 может встать только 6.

2) Рядом с 2 стоит 4. Тогда рядом с 4 может стоять 1,3  или 6  .

Ошибка.
Попробуйте повторить позже

Задача 4#79615

Положительные числа a,b,c  таковы, что

 2  2   2
a + b +c + 2abc= 1

Докажите, что

a∘ (1− b2)(1-− c2)+b∘ (1−-c2)(1−-a2)+c∘(1−-a2)(1−-b2)≥ 2√abc

Источники: Изумруд-2024, 11 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Рассмотрим подкоренные выражения. Что можно сказать о них? Как использовать условие?

Подсказка 2

Раскрыв скобки под корнями и применив условие, получаем возможность избавиться от корней! Переходим к новому неравенству - очень уж оно напоминает условие;)

Подсказка 3

Получаем, что a^2 + b^2 + c^2 + 3 abc >= 2*sqrt(abc). Как применить условие? Остаётся несложно неравенство, которое очень напоминает кое-что известное!

Показать доказательство

Рассмотрим одно из подкоренных выражений

(   2)(   2)      2  2   22
 1− b  1− c = 1− b − c + bc

По условию 1− b2− c2 = a2+2abc  , поэтому подкоренное выражение равно (a+ bc)2  , и, так как a,b,c> 0  , ∘ (a+-bc)2 = a+bc  .

Для оставшихся слагаемых рассуждения аналогичные

                         √ ---
a(a +bc)+b(b+ac)+c(c+ab)≥ 2 abc

 2   2  2        √---
a + b + c+ 3abc≥ 2 abc

Пользуясь равенством из условия, получаем

1+abc≥ 2√abc

     ---
(1 +√ abc)2 ≥0

Верное для любых a,b,c  неравенство.

Ошибка.
Попробуйте повторить позже

Задача 5#79614

Можно ли в клетках квадрата 6 ×6  расставить числа от 1 до 36 (каждое по одному разу) так, чтобы 6 сумм по горизонтали и 6 сумм по вертикали в некотором порядке являлись 12 последовательными числами?

Источники: Изумруд-2024, 11 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Обозначим первую из 12 последовательных сумм за n. Какие числа входят в эти суммы? Что можно сказать о сумме всех сумм по горизонтали? А по вертикали?

Подсказка 2

Заметим, что при подсчёте всех горизонтальных сумм мы каждое число в таблице посчитали один раз. Тогда чему будет равна сумма всех таких 12ти сумм?

Подсказка 3

Удвоенной сумме всех чисел в таблице. Может ли быть такое? Проверим уравнением

Показать ответ и решение

Предположим, что можно. Сумма всех чисел равна 1+ 2+ 3+ ...+36  . А удвоенная их сумма равна n+ (n+1)+ ...+ (n +11)  . Посчитав суммы арифметических прогрессий, получаем

2n+ 11      36 ⋅37
--2---⋅12 = -2---⋅2

2n =211

Противоречие, так как n ∈ℕ.

Ответ: нет

Ошибка.
Попробуйте повторить позже

Задача 6#71023

Петя и Вася играют в следующую игру. Петя в каждую клетку таблицы 8 × 8 записывает число от 1 до 64, используя каждое по одному разу. После этого Вася выбирает одну из клеток и ставит на эту клетку ладью. Затем он выбирает вторую клетку, на которую можно переместиться одним ходом ладьи из первой клетки, и перемещает ладью на эту клетку. Далее он выбирает третью клетку, на которую можно переместиться одним ходом ладьи из второй клетки, и перемещает ладью на эту клетку. Выбирать ранее посещённые клетки запрещено. После этого Вася складывает все три числа, записанных в клетках, на которых стояла ладья. Какую максимальную сумму гарантированно может получить Вася независимо от того, каким способом Петя заполнит таблицу? (Ладья может перемещаться на любое количество клеток по горизонтали или вертикали.)

Источники: Изумруд-2023, 11.5 (см. izumrud.urfu.ru)

Показать ответ и решение

Лемма. а) На доске 8× 8  выбраны 11 произвольных клеток. Тогда среди них можно найти три клетки такие, что от одной их них можно двумя ходами ладьи обойти вторую и третью клетки.

б) На доске, суммарное числом столбцов и строк в которой не более 11, выбраны 8 клеток. Тогда среди них можно найти три клетки такие, что от одной их них можно двумя ходами ладьи обойти вторую и третью клетки.

Доказательство леммы. Если в столбце/строке выбрана одна клетка, будем называть её одиночной, а если две — будем называть каждую из двух клеток парной. Будем говорить, что клетка занимает строку/столбец, если она стоит в этой строке/столбце. Заметим, что никакие другие клетки не могут быть выбраны в столбце/строке, где стоит одиночная или парная клетки. Тогда каждая пара клеток занимает суммарно 3 строки и столбца, а каждая одиночная — 1 строку и 1 столбец.

a) Обозначим число одиночных клеток за x,  а число парных клеток — за 2y.  Если лемма не выполняется, то нельзя 11 клетками занять более 8 строк и 8 столбцов, то есть 16 в сумме. Тогда имеем систему

{
   x+ 2y = 11
  2x +3y ≤ 16

Но 2x+ 3y = 1,5(x+ 2y)+ 0,5x= 16,5+0,5x> 16  — противоречие. Следовательно, предположение неверно и пункт а) леммы доказан.

б) Аналогично пункту а) леммы обозначим число одиночных клеток за x,  а число парных клеток за — 2y.  Если лемма не выполняется, то нельзя 8 клетками занять более 11 строк и столбцов в сумме. Тогда имеем систему

{
   x +2y = 8
  2x +3y ≤ 11

Но 2x+ 3y = 1,5(x+ 2y)+ 0,5x =12+ 0,5x >11  — противоречие. Следовательно, предположение неверно и пункт б) леммы доказан.

Решение

Рассмотрим 11 клеток с числами от 54 до 64. Из пункта а) леммы следует, что какие-то три из них второй игрок может обойти, придерживаясь условий задачи. Минимальная сумма трёх из этих чисел равна

54 +55+ 56= 165,  значит второй игрок всегда может получить сумму не менее 165 . Предположим, что сумму больше 165 не всегда удастся получить. Тогда никакие три из клеток с числами от 54 до 64 помимо 54, 55, 56 не должны оказаться в одной строке/столбце или образовывать "угол".

- - - - - - - -
- - a - - b - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - c  - -
- - - - - - - -
- - - - - - - -

При этом числа 54, 55, 56 обязаны оказаться в одной строке/столбце или образовывать "угол иначе найдётся другая тройка чисел с большей суммой. Если эти числа располагаются в одной строке/столбце, или образуют "угол то занимают суммарно 4 строки и столбца. Без ограничения общности, пусть эти числа стоят так, как показано ниже, ведь если поменять какие-то строки/столбцы местами, искомая сумма не изменится.

54 55 56 X X X X X
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -

И в том, и в другом случае оставшиеся 8 клеток с числами от 57 до 64 располагаются в выделенном прямоугольнике, количество строк и столбцов в которых суммарно равно 12. Если эти 8 клеток занимают не все строки или столбцы, то они занимают суммарно не более 11 строк и столбцов. Тогда из пункта б) леммы следует, что какие-то три числа стоят в одной строке/столбце или образуют “угол”, а значит, выбрав эти три клетки, мы увеличим искомую сумму. Если эти 8 клеток, среди которых x  одиночных и 2y  парных клеток, занимают все строки и столбцы, то имеем систему

{  x +2y = 8
  2x +3y = 12

откуда x =0,y = 4.  Следовательно, все клетки в выделенном прямоугольнике парные. Тогда найдётся число не менее 52 (на второй таблице число 53 может дополнять серые клетки до квадрата), которое стоит в одной строке или в одном столбце с какой-то парной клеткой из выделенного прямоугольника. Взяв это число и две парные клетки, получим сумму не менее 52+  57+58= 167.  Значит, примера, гарантирующего сумму 165, но не гарантирующего сумму 166, не существует.

Пример, гарантирующий сумму 166, но не гарантирующий сумму 167:

64 1 2 3 4 5 6 7
63 8 9 10 11 12 13 14
15 62 16 17 18 19 20 21
22 61 23 24 25 26 27 28
29 30 60 59 46 45 44 43
31 32 42 41 58 47 50 53
33 34 40 39 48 57 51 55
35 36 37 38 49 52 56 54

Здесь сумма 166 достигается, например, на числах 54, 55, 57. Все остальные суммы в пределах правого нижнего прямоугольника 3×4  не превосходят 166. Максимальная сумма в пределах правого нижнего прямоугольника 4 ×6  не будет превосходить 166, так как 60+ 59+46 =165.  Оставшиеся числа можно ставить в любые из оставшихся клеток, так как максимальная ещё не рассмотренная сумма будет равна 64 +63+ 36= 163.

Ответ: 166

Ошибка.
Попробуйте повторить позже

Задача 7#71022

Найдите количество троек натуральных чисел m, n,k  , являющихся решением уравнения

   ∘ ---√--
m+   n+  k= 2023

Источники: Изумруд-2023, 11.4 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Для каждого значения √(n+√k) значение m будет определено однозначно. Подумайте, какие значения может принимать √(n+√k).

Подсказка 2

√(n+√k) не может быть меньше 2, так как n и k больше 1, и также не может быть больше 2022, так как 2023-m≤2022. Давайте обратим внимание на то, что в правой части уравнения стоит целое число, тогда и в левой части тоже должно быть целое. Какие должны для этого соблюдаться условия?

Подсказка 3

Для этого k и n+√k должны быть точными квадратами. Обозначим k = x² и n+√k = y². В таком случае, число n определяется однозначно, значит, для получения ответа на задачу нам нужно найти все возможные пары (x, y).

Показать ответ и решение

Чтобы левая часть была целым числом, числа k  и n +√k  должны быть точными квадратами, при этом n+ √k ≥2,  значит ∘ ---√--
  n+  k ≥2  и отсюда m ≤2021.  Так как 1≤ m ≤ 2021,  то ∘ ---√--
  n+  k  может принимать любое значение от 2  до 2022  — по этому значению число m  определяется однозначно.

Пусть    2
k= x  и    √ -  2
n +  k= y,  где        2
1≤ x≤ y − 1  и 2≤y ≤2022,  тогда число n  определяется однозначно, а именно     2
n= y − x.  Получается, необходимо посчитать число допустимых пар (x,y).  Всего их

(    )      (       )
 22− 1+ ...+  20222− 1 =12+ 22+ ...+20222− 2022

Формула суммы квадратов первых n  натуральных чисел известна:

 2  2       2  n(n+ 1)(2n +1)
1 +2 + ...+ n = ------6-----

Применим эту формулу и получим

                       2022⋅2023 ⋅4045
12+22+ ...+ 20222− 2022 = -----6------− 2022= 27575680773
Ответ: 27575680773

Ошибка.
Попробуйте повторить позже

Задача 8#71021

Положительные числа a,b,c,d  таковы, что числа a2,b2,c2,d2  в указанном порядке составляют арифметическую прогрессию и числа --1--
a+b+c  , --1--
a+b+d  , --1--
a+c+d  , -1---
b+c+d  в указанном порядке составляют арифметическую прогрессию. Докажите, что a =b= c= d  .

Источники: Изумруд-2023, 11.3 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Воспользуемся характеристическим свойством арифметической прогрессии и получим четыре уравнения от четырех переменных. Попробуйте преобразовать их таким образом, чтобы получить зависимость b + d от c.

Подсказка 2

Приведем к общему знаменателю уравнение 1/(a+b+c)+1/(a+c+d)=2(a+b+d). Получаем, b²+d²+ab+ad=2c²+2ac. Так же мы знаем, что b²+d²=2c². Попробуйте, пользуясь ранее полученными уравнениями, сперва доказать, что b = d, потом, что c = b, а затем и равенство a = b.

Показать доказательство

Запишем характеристическое свойство для каждой арифметической прогрессии:

 2  2   2
a +c = 2b
(1)

b2 +d2 = 2c2
(2)

---1---+ ---1---= ---2---
a +b+ c  a+ c+ d  a+ b+ d
(3)

Преобразуем уравнение (3):

(a+ b+d)(a+c+ d)+ (a+ b+ c)(a+b +d)= 2(a+ b+ c)(a+c +d)

2a2+ b2 +d2+ 3ab +2ac+3ad+ 2bc +2bd+2cd= 2a2+2c2+ 2ab+ 4ac+2ad+ 2bc+ 2bd+2cd

b2+d2+ ab+ ad =2c2+ 2ac

Воспользовавшись равенством (2),  получим

ab +ad= 2ac

при этом a> 0,  значит b+ d= 2c.  Подставим в равенство (2)  и получим

        (b +d)2
b2 +d2 = 2--2-

2(b2 +d2)= b2 +2bd+d2

(b− d)2 = 0

То есть b= d.  Но 2c= b+d =2b,  откуда b=c =d.

Подставим полученные равенства в уравнение (1):

a2+b2 = 2b2

Значит, a= b= c=d.

Ошибка.
Попробуйте повторить позже

Задача 9#71020

Существует ли многоугольник, не имеющий центра симметрии, который можно разрезать на два выпуклых многоугольника, каждый из которых имеет центр симметрии?

Источники: Изумруд-2023, 11.2 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Придумывать что-то очень сложное не хочется, поэтому думаем, а на какие простые фигуры, имеющие центр симметрии, хочется разбить наш многоугольник?

Подсказка 2

На прямоугольники! Составим фигуру из них)

Показать ответ и решение

Пример:

PIC

Пример подходит, потому что центрами симметрии прямоугольников являются точки пересечения их диагоналей, а данный многоугольник не имеет центра симметрии, так как если он лежит вне синего отрезка, проходящего через середину одной из сторон, левые вершины многоугольника перейдут не в точки многоугольника, а если он лежит вне красного отрезка, проходящего через середину другой стороны, то верхние вершины многоугольника перейдут не в точки многоугольника.

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 10#71019

Дарья Дмитриевна готовит зачёт по теории чисел. Она пообещала каждому студенту дать столько задач, сколько слагаемых он создаст в числовом примере

a1+ a2+...+an = 2021,

где все числа ai  — натуральные, больше 10 и являются палиндромами (не меняются, если их цифры записать в обратном порядке). Если студент не нашёл ни одного такого примера, он получит на зачёте 2021 задачу. Какое наименьшее количество задач может получить студент?

Источники: Изумруд-2023, 11.1 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Легко можно придумать пример для трех. Например, 22+888+1111. Попробуйте доказать, что меньше трех придумать невозможно.

Подсказка 2

Пример на одного числа невозможен, так как 2021 - не палиндром. Если же чисел будет два, то одно число обязательно должно быть четырехзначным. Рассмотрите несколько вариантов того, как может выглядеть это четырехзначное число. Подумает, как при этом должно выглядеть второе число в сумме.

Показать ответ и решение

Одну задачу студент получить не может, так как 2021 не является палиндромом. Предположим, что он может получить две задачи, тогда хотя бы одно из чисел a1,a2  — четырёхзначное. Если оно начинается на 2, то вторая цифра 0 и само число равно 2002. В таком случае второе число равно 19, что не палиндром. Если же число начинается с 1, то его последняя цифра также 1 и у второго числа последняя цифра должна быть нулём, что неверно для палиндромов. Значит две задачи студент получить не мог. Пример на 3 задачи существует, например, 1111+ 888+ 22= 2021.

Ответ: 3

Ошибка.
Попробуйте повторить позже

Задача 11#76459

Пусть p ,p,...,p ,...
 1 2     n  — множество всех простых чисел, расположенных в некотором порядке. Может ли случиться так, что для всех натуральных i  число pipi+1−p2i+2-
 pi+pi+1  является натуральным?

Источники: Изумруд-2022, 11.5 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

В задачах на делимость (а это по сути она и есть) часто выгодно рассмотреть какое-то красивое число. А поскольку у нас в задаче часто фигурируют простые, рассмотрим p_m = 2. Что тогда хорошего можно сказать про дробь?

Подсказка 2

Тогда, можно сказать, что число меньше 2, а значит равно 1, а значит, p_(m + 1) = p^2_(m + 2) + 2. А мы как-то использовали m? Может ли m быть сильно большим? Как можно ограничить m зная симметричность p_(i + 1) и p_i в нашем числе?

Подсказка 3

Если m > 1, то можно взять рассмотреть (2p_(m - 1) - p^2_(m + 1))/(2 + p_(m - 1)). Тогда, p_(m - 1) = p^2_(m + 1) + 2 = (p^2_(m + 2) + 2)^2 + 2. По какому модулю теперь удобно посмотреть, при наличии тут множественных квадратов?

Подсказка 4

Конечно, mod 3. Ведь тогда, если p_(m + 2) != 3, то p_(m + 1) кратен 3, а значит равен 3. Но тогда p_(m + 2) = 1. А если же p_(m + 2) = 3, то p_(m - 1) = 123. Значит, пришли к общему противоречию с тем, что m > 1, значит, m = 1. При этом, поняли, что mod 3 в этой задаче, как будто, играет важную роль. Давайте тогда , если уж все таки хотим делимость, рассмотрим такие p_k и p_k + 1, что их сумма кратна 3, и при этом они оба отличны от 3. Что это значит тогда для этих двух чисел? А для дроби?

Подсказка 5

Это значит, что остатки mod 3 у этих

Подсказка 6

Это числа, которые сравнимы с 2 mod 3, а после идет сама тройка. Но тогда, если после тройки стоит число = 2 mod 3, то после него идут только числа = 2 mod 3, а значит пришли к противоречию, так как числа = 1 mod 3 существуют. А значит, после 3 идут только числа = 1 mod 3, но тогда перед 3 стоит конечное число простых = 2 mod 3. А то, что таких бесконечно - остаётся вам в качестве упражнения! :)))

Показать ответ и решение

Предположим, что такое могло случиться. Тогда существует натуральное m  такое, что p  = 2.
 m  Значит число

2pm+1 − p2m+2     p2m+2 + 4
--2+pm+1---= 2− 2+pm+1-< 2

является натуральным, откуда

p2m+2-+4 =1 и pm+1 =p2  +2
2+ pm+1            m+2

Случай m> 1  невозможен, так как тогда число

2pm− 1− p2       p2   + 4
--2+pm−m1+1-= 2− m2++1pm-−1 < 2

также является натуральным, откуда

p2m+1-+4 =1 и p   =p2   +2= (p2  + 2)2 +2
2+ pm−1      m−1   m+1       m+2

Теперь если pm+2 = 3,  то pm−1 =123,  что невозможно. Если же pm+2 ⁄= 3,  то

p2   ≡ 1 и p  =p2   +2 ... 3
 m+2 3    m+1   m+2

Значит,

pm+1 = 3, pm+2 = 1

Это невозможно. Следовательно, m =1.

Предположим теперь, что нашлись числа pk  и pk+1  с различными ненулевыми остатками при делении на 3, то есть

       ..
pk+pk+1. 3

Поскольку число

pkpk+1 − p2
--p-+-p-k+2
   k  k+1

является натуральным, то

           .
pkpk+1 − p2k+2.. 3

Но тогда

p2k+2 ≡3 pkpk+1 ≡3 2

Это невозможно, так как квадраты имеют остатки 0 или 1 при делении на 3. В итоге мы доказали, что числа с остатками 1 и 2 при делении на 3 не могут быть соседними.

Поскольку p1 = 2,  это означает, что после p1  стоят несколько чисел с остатком 2 при делении на 3, затем где-то стоит число 3. Если после тройки стоит число с остатком 2 при делении на 3, то все числа далее будут с таким же остатком и в последовательности простых чисел не будет ни одного числа с остатком 1 при делении на 3 (такие есть, например, число 7).

Следовательно, после тройки стоит число с остатком 1 при делении на 3 и все числа за ним имеют такой же остаток. Но тогда до тройки стоит лишь конечное число простых чисел с остатком 2 при делении на 3.

Предположим, что простых чисел вида 3k+ 2  конечное число. Обозначим все такие числа через q1,q2,...,ql.  Число 3q1q2...ql− 1  не делится на простые числа q1,q2,...,ql  и даёт остаток 2 при делении на 3. Значит среди его простых делителей должно быть число вида 3k+ 2  — противоречие.

Ответ: нет

Ошибка.
Попробуйте повторить позже

Задача 12#76458

Назовём число x  полуцелым, если число 2x  — целое. Полуцелой частью числа x  назовём наибольшее полуцелое число, не превосходящее x,  и будем обозначать ]x[.  Решите уравнение

 2
x + 2⋅]x[= 6

Источники: Изумруд-2022, 11.3 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Так, даны какие-то полуцелые части. Понятно, что сразу же напрашивается аналогия с целой и дробной частью. Когда мы делим число x на целую —[x], и дробную — {x} части, мы можем записать, что х=[x]+{x}, где [x] — целое число, а {x} лежит на [0,1). Здесь, чтобы облегчить себе жизнь, поступим так же и запишем подобные ограничения на полуцелую часть числа и “остаток”, который получается после ее вычитания.

Подсказка 2

Если обозначить за n/2 полуцелую часть, то можно записать, что x = n/2+r. Получаем уравнение на n и r и имеем соответствующие ограничения на эти величины. Далее нужно будет активно использовать то, в каких пределах лежит r, и вспомнить, какие приемы можно использовать в подобных задачах с целой и дробной частью.

Подсказка 3

Удобнее будет отдельно рассмотреть положительные и отрицательные n. Дальше только аккуратные преобразования, нахождение n, подстановка и нахождение r :)

Показать ответ и решение

Рассмотрим два случая.

1) Число x  — полуцелое, тогда ]x[= x  и исходное уравнение примет вид

 2
x + 2x − 6 =0

Корнями данного уравнения являются числа x1,2 = −1± √7,  но тогда числа 2x1,2  не являются целыми, значит решений нет.

2) Имеет место равенство

   n
x= 2 +r,

где n ∈ℤ  и        1
0 <r < 2,  тогда

 [  n
]x = 2

А также исходное уравнение примет вид

(n   )2
 2 + r + n− 6=0

Выразим из уравнения r  и получим

r= − n± √6−-n
     2

Решения существуют только при n≤ 6.  Найдём все n,  удовлетворяющие неравенству

n< ±√6-− n-< n+-1
2            2

Если n≥ 0  , то n+-1> 0
  2  и может иметь решение только лишь неравенство

n  √ ----  n+-1
2 <  6− n < 2  ,

которое после возведения в квадрат равносильно

 2               2
n < 4(6− n)< (n +1)

{ n2+ 4n− 24 <0
  n2+ 6n− 23 >0

(|{ − 2− 2√7-< n< −2+ 2√7
  [ n >− 3+ 4√2-
|(   n <− 3− 4√2-

Поскольку         √-            √-
2< −3+ 4 2< 3,3< −2+ 2 7< 4,  и       √-       √-
− 3− 4 2< −2− 2 7  , то n =3  — единственное целое значение, удовлетворяющее системе. В этом случае

x= n + r=√6-−-n= √3
   2

Если − 1< n< 0,  то решений нет, так как n  — целое.

Если n≤ −1  , то n-+1 ≤0
  2  и может иметь решение только лишь неравенство

n2 > 4(6− n)> (n +1)2

{ n2+ 4n− 24 >0
  n2+ 6n− 23 <0

  [
(|{   n >− 2+ 2√7-
    n <− 2− 2√7-
|( − 3− 4√2-< n< −3+ 4√2

Поскольку           √-              √-
− 9< −3− 4 2< −8,−8< −2 − 2 7 <− 7,  и      √ -       √-
− 3+ 4 2< −2+ 2 7,  то n= −8  — единственное целое значение, удовлетворяющее системе. В этом случае

x = n+ r= −√6-− n =− √14
    2
Ответ:

 √3,− √14

Ошибка.
Попробуйте повторить позже

Задача 13#76421

Сколькими способами в таблице 3× 3  можно расставить числа от 1 до 9 (каждое по одному разу) так, чтобы в каждом столбце сверху-вниз и в каждой строке слева-направо числа шли в порядке возрастания?

Источники: Изумруд-2022, 11.2 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Попробуем представить себе расстановку чисел в таблице (от а₁ до а₉). Что можно точно сказать об этих числах?

Подсказка 2

Правильно, в каждом ряду и столбце последующее число больше предыдущего. Подумайте, чему равны первое (а₁) и последнее (а₉) числа, а также попробуйте вывести оценку на а₅.

Подсказка 3

Теперь, имея оценку на а₅, можем разобрать по отдельности все три случая возможного значения.

Подсказка4

Если а₅ = 4 или 6, по очереди находим количество способов расстановки чисел, меньших и больших а₅, а затем перемножаем. Если а₅ = 5, то следует начать с рассмотрения клеток а₃ и а₇ и количества способов для каждого значения цифр, стоящих в этих клетках. Остаётся только проверить, нет ли у нас пересекающихся случаев, и сложить общее количество способов

Показать ответ и решение

Пронумеруем клетки таблицы так, как показано на рисунке. Ясно, что в левой верхней клетке стоит число 1, а в правой нижней — число 9.

1 a2  a3
a4  a5  a6
a7  a8  9

По условию a5 > a2,a5 > a4,a5 < a6,a5 <a8,  поэтому 4 ≤a5 ≤ 6.  Рассмотрим случаи.

1) Если a5 =4,  то числа a2  и a4  — это 2 и 3. Способов их расстановки всего 2. Теперь вычислим количество вариантов выбора чисел a3  и a6.  На их место можно поставить любую из оставшихся пар чисел, причём a3 < a6,  поэтому расстановка каждой пары определяется однозначно. Всего таких пар C2 = 6.
 4  Оставшиеся два числа расставляются однозначно. Всего получилось 2 ⋅6 =12  вариантов расстановки.

2) Если a5 =6,  то числа a6  и a8  — это 7 и 8, и случай аналогичен предыдущему. Получаем ещё 12 вариантов расстановки.

3) Если a5 =5,  то посмотрим, какие числа могут стоять в клетках с номерами a3  и a7.  На их место нельзя ставить числа 2 и 8, так как эти числа обязаны быть соседями 1 и 9 соответственно. Если a =3,
3  то a = 2
 2  и a = 4.
 4  Любое из оставшихся чисел можно поставить в клетку a
 6  тремя способами, оставшиеся числа ставятся однозначно. Рассмотренный вариант аналогичен случаям a = 7,a =3
 3    7  и a = 7
 7  — в каждом получаем по 3 варианта расстановки, но были дважды посчитаны случаи, когда числа a
 3  и a
 7  — это 3 и 7. Всего таких случаев два:

1 2 3
4 5 6
7 8 9
1 4 7
2 5 8
3 6 9

В итоге получаем 3⋅4− 2= 10  вариантов.

Если ни одно из чисел в клетках a3  и a7  не равно 3 или 7, то в клетках a3  и a7  могут стоять лишь числа 4 и 6 в любом порядке. Тогда в клетках a2  и a4  стоят числа 2 и 3 в любом порядке, а в клетках a6  и a8  — числа 7 и 8 в любом порядке. Всего 8 вариантов расстановок.

Все случаи разобраны, искомое число вариантов равно 24+ 10+8 =42.

Ответ: 42

Ошибка.
Попробуйте повторить позже

Задача 14#76420

В вершинах правильного двенадцатиугольника в некотором порядке расставили натуральные числа от 1 до 12 (каждое по одному разу). Могло ли случиться так, что суммы всех пар соседних чисел являются простыми и суммы всех пар чисел, между которыми стоят ровно два числа, тоже являются простыми?

Источники: Изумруд-2022, 11.1 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Для начала, попробуйте взять любое число от 1 до 12 и посмотреть, сколько чисел в сумме с исходным дают простое число!

Подсказка 2

Да, для каждого числа это индивидуально, поэтому конкретно из этого факта мало что можно извлечь. Но если рассмотреть похожую идею, какие числа в сумме с исходным образуют простое число? И как нам это поможет в задаче?

Подсказка 3

Верно, каждое число влияет ровно на 4 суммы. Так что, если мы найдем два числа, для которых дополнение до простого совпадает, то мы победим! (дополнение – число, которое в сумме с исходным даёт простое)

Подсказка 4

Да, надо посмотреть на числа 6 и 12.

Показать ответ и решение

Каждое число в вершине участвует ровно в четырёх суммах. Заметим, что для получения простой суммы к числам 6 и 12 можно прибавить только 1, 5, 7 и 11. Значит для вершин, в которых стоят числа 6 и 12, наборы соседних чисел и чисел, стоящих от них через две вершины, должны совпадать. Однако, для каждой вершины эти наборы различны, поэтому хотя бы одна из сумм не будет являться простым числом.

Ответ: нет

Ошибка.
Попробуйте повторить позже

Задача 15#68190

В неравнобедренном треугольнике ABC  точка K  — середина стороны AB,M  — точка пересечения медиан, I  — центр вписанной окружности. Известно, что         ∘
∠KIB = 90 . Докажите, что MI ⊥ BC  .

Источники: Изумруд-2022, 11.4 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

Нужно как-то использовать условие про угол, но углы с серединами сторон обычно очень плохо считаются, нужно как-то использовать, что угол именно прямой...

Подсказка 2

Давайте вспомним, что внутренняя и внешняя биссектрисы одного угла перпендикулярны, это наталкивает нас на мысль рассмотреть...

Подсказка 3

Центр I_a вневписанной окружности! Ведь тогда мы получим, что KI параллельно BI_a.

Подсказка 4

Тогда KI - средняя линия, и мы получаем, что AI=II_a. Мы получили какое-то отношение длин на прямой AI_a. Какой ещё есть факт, связанный с отношениями на этой прямой?

Подсказка 5

Лемма о трезубце! Применив её, мы получим, что IW=WI_a, где W - середина дуги BC. Но это значит, что AI/IW=2/1. Это что-то напоминает... Вспомните, что мы ещё не использовали?

Подсказка 6

Мы ещё ничего не говорили, что точку M пересечения медиан, настало время ей воспользоваться, и тем, что медиана делится в отношении 2/1 точкой M, и задача решится!

Показать доказательство

PIC

Давайте поймем, как реализовать странное условие про угол. Вспомним про то, что внутренняя и внешняя биссектрисы одно и того же угла перпендикулярны. Тогда давайте дополнительно отметим центр вневписанной окружности данного треугольника, касающейся стороны BC.  Пусть это Ia.  Значит,

∠IaBI = ∠BIK = 90∘ ⇐⇒ BIa ∥ KI

Так как AK = KB,  то IK  — средняя линия треугольника ABIa.  По лемме о трезубце W  — середина IIa,  следовательно, CI =IIa = 2IW.  Тогда

-AI = 2
IW    1

Пусть P  — середина стороны BC.  Тогда по свойству медианы:

AM- = 2
MP    1

Тогда

MI ∥W P

Так как W  — середина дуги BC,  не содержащей A,  то

WP ⊥ BC

А это означает требуемое.

Ошибка.
Попробуйте повторить позже

Задача 16#87858

На доске размером 12× 12  стоит сказочная шахматная фигура принцесса. За один ход принцесса может передвинуться либо на одну клетку вправо, либо на одну клетку вверх, либо на одну клетку по диагонали влево-вниз. Какое наибольшее число не бьющих друг друга принцесс можно поставить на доску?

Показать ответ и решение

Заметим, что в прямоугольниках 2×1  и 1× 2  находится не больше одной принцессы. Иначе в прямоугольнике 1× 2  левая принцесса била бы правую, а в прямоугольнике 2 ×1  нижняя принцесса — верхнюю. Значит, принцессы не могут быть в соседних по стороне клетках.

Покажем, что в прямоугольнике 2 ×3  не более двух принцесс. Предположим, что в таком прямоугольнике можно разместить хотя бы 3  фигуры принцесс. Так как принцессы не являются соседями по стороне, то возможны два варианта их размещения (розовые квадратики — фигуры прицесс)

PIC

В обоих случаях найдется принцесса, которая будет побита.

Тогда если разбить доску 12× 12  на 24  непересекающиеся области размера 2×3  получим, что принцесс не более

2⋅24= 48

48 принцесс разместить уже возможно:

PIC

Ответ: 48

Ошибка.
Попробуйте повторить позже

Задача 17#73375

Максим написал на доске произвольный многочлен P (x)  с целыми коэффициентами. Антон, не глядя на доску, сказал, что какое бы натуральное число n  не назвал Максим, среди выражений P (1),P (1)+ P(2),P(1)+ P(2)+P (3),...  обязательно найдётся число, кратное n.  Прав ли Антон?

Показать ответ и решение

Заметим, что P(x+n) ≡P (x) (mod n),  это следует из того, что (x +n)k ≡ xk (mod n)  для любого k.  Рассмотрим сумму                   2
P (1)+ P(2)+ ...+ P(n).  Заметим, что в слагаемые в той сумме разбиваются на n  групп так, что в каждой группе слагаемые имеют вид P(i+kn)  (i,k ∈[0,n− 1]  ) и дают одинаковый остаток при делении на n.  Но тогда сумма слагаемых в каждой группе кратна n,  потому что мы суммируем n  одинаковых остатков. Но тогда и вся рассмотренная сумма кратна n.

Ответ:

Да, прав

Рулетка
Вы можете получить скидку в рулетке!