Тема Физтех
Стереометрия на Физтехе
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела физтех
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#80774

В основании призмы лежит равносторонний треугольник площади 1. Площади её боковых граней равны 3, 3 и 2. Найдите объём призмы.

Источники: Физтех - 2024, 11.7 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Во-первых, надо осознать картинку. Она, как будто, симметричная, но не стоит так думать сразу. Давайте опустим высоты из точки A_1 на прямые AB, AC, и плоскость ABC. Что тогда можно заметить? Какие принципиально разные случаи есть падения высоты на плоскость ABC?

Подсказка 2

Есть два случая - падение во внутрь призмы и во вне. Однако, при всем этом, у нас расстояния от точки A_1’(основание высоты) до прямых AB и AC равны, в силу равенства прямоугольных треугольников. Как тогда можно равносильно переформулировать случаи, когда высота падает во внутрь, а когда наружу? Как связать это с равноудаленностью от сторон?

Подсказка 3

Все верно, либо точка основания высоты лежит на внешней биссектрисе, либо на внутренней(угла BAC). Давайте посмотрим на второй случай. Мы видим, что прямые AA’ и A_1A’ перпендикулярны BC. Что тогда это значит? Чем это хорошо в нашей картинке?

Подсказка 4

Тем, что тогда BB_1 перпендикулярен BC, а значит BB_1C_1C - прямоугольник. Но тогда, если сторона треугольника в основании равна а, выходит, что a * AA_1 = 2, a * A_1K = 3. Тогда, пришли к противоречию, так как A_1K > AA_1. Значит, остался второй случай. Если прямая внутренней биссектрисы, была перпендикулярна прямой BC, то внешняя биссектриса будет…

Подсказка 5

Параллельна! А тогда, высота в параллелограмме CC_1B_1B - высота призмы. Значит, остается найти C_1H. Ну, а это уже чисто дело техники(и нескольких теорем Пифагора).

Показать ответ и решение

Если бы призма была прямая, то площади боковых граней были бы равны. Значит, призма наклонная.

Обозначим призму ABCA1B1C1,  площади из условия SAA1B1B = SAA1C1C = 3.

Пусть A1K, A1M  — высоты параллелограммов AA1B1B  и AA1C1C.  Тогда A1K = A1M,  т.к. площади равны, а также равны их основания, так как равносторонний треугольник.

Пусть  ′
A — проекция A1  на плоскость ABC.  Тогда  ′     ′
A K = AM,  следовательно, точка равноудалена от прямых AB  и AC.

(a) Рассмотрим случай, когда  ′
A принадлежит биссектрисе AL  угла ∠ABC.  AL  — высота, медиана и биссектриса в равностороннем треугольнике.

PIC

AL ⊥ BC   }                ′
A1A′ ⊥ BC    =⇒   BC ⊥(AA1A )  =⇒  BC ⊥ AA1  =⇒   BC ⊥ BB1

Тогда получаем, что BB1C1C  — прямоугольник. Пусть сторона треугольника ABC  равна a.  Посчитаем площадь прямоугольника и параллелограмма.

S1 =a ⋅AA1, S2 = a⋅A1K

2 =a ⋅AA1, 3= a⋅A1K

Но A1K < AA1,  тогда

3= a⋅A1K < a⋅AA1 = 2

получаем противоречие.

(b) Рассмотрим случай, когда A′ принадлежит внешней биссектрисе AL  угла ∠ABC.

PIC

AA′ ∥BC  )|}
A1A∥BB1     =⇒   (AA1A′) ∥(BB1C )
AA′ ∥BC  |)

Но (AA1A′)⊥(ABC ),  следовательно, (BB1C)⊥ (ABC ),  откуда следует, что высота CH1  параллелограмма CC1B1B  совпадает с высотой призмы (C1H = A1A′).  В итоге

V = SABC ⋅CH1 = 4√3
Ответ:

√43-

Ошибка.
Попробуйте повторить позже

Задача 2#80773

Дана правильная шестиугольная пирамида SABCDEF  (S  — вершина) со стороной основания 2  и боковым ребром 4.  Точка X  лежит на прямой SF,  точка Y  — на прямой AD,  причём отрезок XY  параллелен плоскости SAB  (или лежит в ней). Найдите наименьшую возможную длину отрезка XY.

Источники: Физтех - 2024, 11.7 (см. olymp-online.mipt.ru)

Показать ответ и решение

За (ABC )  будем обозначать плоскость, проходящую через точки A  , B  и C.

Возьмем на прямой SC  такую точку Z  , что SZ =SX  . Тогда

XZ ∥FC ∥AB ∥(ABS )

На прямой AF  же возьмем точку T  такую, что XT ∥AS ∥(ABS)  . Получается, что плоскость (XZT )∥ (ABS )  Тогда XY  лежит в плоскости (XZT )  . (XZT )  пересекает плоскость основания по прямой TK  (K ∈ BC  ), параллельной AB.

PIC

Пусть AT = a  . Тогда TF = |2− a| , TX = 2TF =2|2− a| . Треугольник ATY  будет правильным (есть 2 угла по 60∘ ), т.е. TY = AT =a  .

       (
       { ∠SAB =arccos14, a <2
∠XT Y = ( 180∘− ∠SAB = 180∘− arccos1, a> 2,
                               4

т.к. это 2 угла с параллельными сторонами.

Рассматриваем треугольник XT Y  . XY 2 = XT2 +YT 2− 2XT ⋅TY ⋅cos(∠XT Y)  . Подставляем найденные значения.

4(2− a)2+a2− a|2− a|= XY2

Минимум выражения слева достигается при a =− −21⋅68= 1,5  и равно XY2 =2,5  . Тогда min(XY )= √2,5-

Ответ:

 ∘ 5
  2

Ошибка.
Попробуйте повторить позже

Задача 3#67591

Дана треугольная пирамида SABC,  медианы AA ,BB
  1   1  и CC
   1  треугольника ABC  пересекаются в точке M.  Сфера Ω  касается ребра AS  в точке L  и касается плоскости основания пирамиды в точке K,  лежащей на отрезке AM.  Сфера Ω  пересекает отрезок SM  в точках P  и Q.  Известно, что SP = MQ,  площадь треугольника ABC  равна 90,SA= BC = 12.

а) Найдите произведение длин медиан AA1,BB1  и CC1.

б) Найдите двугранный угол при ребре BC  пирамиды, если дополнительно известно, что Ω  касается грани BCS  в точке N,SN = 4,  а радиус сферы Ω  равен 5.

Источники: Физтех-2023, 11.7 (см. olymp-online.mipt.ru)

Подсказки к задаче

Пункт а), подсказка 1

Давайте просто начнём хоть что-нибудь делать в задаче и в дальнейшем посмотрим, что из этого получится. У нас есть касание со сферой и секущая. Какой тогда факт связанный со сферой можно сразу заметить?

Пункт а), подсказка 2

Верно, можем записать два выражения по теореме о касательной и секущей. Какую тогда пару равенств отрезков мы получаем?

Пункт а), подсказка 3

Точно, тогда у нас равны произведения в соотношениях, откуда равны SL и MK, а также AM и SA. Но мы знаем, что SA=12 и BC=12. Давайте не будем забывать, что у нас проведены медианы в основании треугольника. Какие тогда ещё отрезки можно найти и какой сделать вывод про треугольник BMC?

Пункт а), подсказка 4

Верно, MA₁=6 по свойству точки пересечения медиан. Но тогда MA₁=BA₁=CA₁=6, и треугольник BMC прямоугольный. Далее, зная площадь треугольника ABC, найти произведение двух оставшихся медиан несложно, так как катеты и будут частями исходных медиан.

Пункт б), подсказка 1

Раз нам нужен двухгранный угол, нужно его сначала построить. Из какой тогда точки удобнее всего опустить перпендикуляр на ребро BC для достижения цели?

Пункт б), подсказка 2

Верно, опустим перпендикуляр KH из точки K. Но тогда, применяя несколько раз теорему о трёх перпендикулярах, получаем, что NH ⊥ BC. Значит нам нужно искать ∠NHK. Но из-за равенства двух прямоугольных треугольников, ∠NHK = 2∠OHK, где O — центр сферы. Чтобы найти угол, скорее всего, надо будет найти сторону прямоугольного треугольника. Но её мы пока не знаем... Какой дополнительное построение тогда можно сделать, где нам что-то известно?

Пункт б), подсказка 3

Верно, давайте проведём ещё высоту в треугольнике BMC, которую мы можем найти. А также у нас два треугольника подобны. Осталось только до конца воспользоваться равенством касательных к сфере, после чего найти неизвестный катет, и, следовательно, двухгранный угол.

Показать ответ и решение

а)

PIC

Поскольку SL  — касательная к сфере Ω,  а SP  и SQ  — секущие к ней, то по теореме о касательной и секущей

  2
SL = SP ⋅SQ

Аналогично,

   2
MK  = MP ⋅MQ

А поскольку MQ  = SP,  то

SP ⋅SQ = MP ⋅MQ

В итоге получаем

SL2 =SP ⋅SQ =MP  ⋅MQ = MK2 ⇒ SL =MK

Так как AL = AK  как касательные к сфере Ω,  проведённые из точки A,  то

AM = AK +MK  = AL+ SL =SA = 12

А поскольку медианы треугольника точкой пересечения делятся в отношении 2 :1  считая от вершины, то

     3
AA1 = 2AM = 18

Кроме того,

A1M  = AM = 6
        2

При этом

A1B =A1C = BC-= 6,
            2

то есть

A1M = A1B = A1C

Отсюда △BMC  прямоугольный и ∠BMC  =90∘.  Далее имеем

SBMC = SABC-= 1 ⋅BM  ⋅CM = 1⋅ 2BB1-⋅ 2CC1-⇒ BB1 ⋅CC1 = 3SABC =135
         3    2           2   3     3              2

Значит,

AA1 ⋅BB1 ⋅CC1 =18⋅135= 2430

б)

PIC

Пусть G  и H  — проекции точек M  и K  на прямую BC  соответственно. Заметим, что NH  ⊥BC,  потому что N  и K  — точки касания сферы Ω  со сторонами двугранного угла пирамиды при ребре BC.  Поэтому искомый угол равен

∠NHK  = 2∠OHK,

где O  — центр сферы Ω.

Далее имеем

       SABC-  1                2SABC-
SBMC =   3  = 2 ⋅BC ⋅MG ⇒ MG =  3BC   =5

Так как SL =SN = 4  как касательные к Ω,  то

AK = AL =SA − SL= 8

Отсюда получаем

A1K =AA1 − AK = 10

Из подобия △A1MG  и △A1KH  имеем

KH = MG ⋅ A1K = 25
         A1M    3

Окончательно,

tg∠OHK  = OK-= 3 ⇒ ∠NHK  =2∠OHK  = 2arctg 3
          KH   5                        5
Ответ:

a) 2430

б)      3
2arctg 5

Ошибка.
Попробуйте повторить позже

Задача 4#70779

Дана пирамида PQRS,  вершина P  которой лежит на одной сфере с серединами всех её рёбер, кроме ребра PQ.  Известно, что QR = 2,  QS = 1,      √-
PS = 2.  Найдите длину ребра RS.  Какой наименьший радиус может иметь сфера, описанная около данной пирамиды?

Источники: Физтех-2022, 11.7 (см. olymp.mipt.ru)

Подсказки к задаче

Подсказка 1

Во-первых, на что нам могут намекать середины сторон? На средние линии. А средние линии параллельны основаниям. Что мы можем из этого извлечь? Какие параллелограммы есть на картинке?

Подсказка 2

Во-первых, в силу свойства средней линии, ADCE и ABDP - параллелограммы. При этом они вписаны в сечения нашей сферой плоскостей ACD и PRS. А значит, эти параллелограммы - прямоугольники. А это дает много прямых углов, а значит - много перпендикулярностей. Какая прямая тогда перпендикулярна прямой RS? А что нам это дает?

Подсказка 3

Прямая PQ перпендикулярна прямой RS, из за того, что параллельные им прямые EA и AD перпендикулярны. Давайте опустим перпендикуляр QH на RS.

Подсказки 4

Тогда у нас плоскость QHP перпендикулярна RS. Значит, и прямая PH перпендикулярна RS. А значит, наш «согнутый» четырехугольник QRPS (то есть, мы можем повернуть треугольник QRS вокруг RS до момента, когда повернутый треугольник будет лежать в плоскости RPS) имеет взаимноперпендикулярные диагонали. А значит, две суммы квадратов противоположных сторон равны. А тогда мы нашли RP. А значит, у нас фиксированы две стороны прямоугольного треугольника RPS, и мы найдем его гипотенузу.

Подсказка 5

Остается дать оценку на радиус сферы, описанной вокруг тетраэдра. Ну какую самую глупую оценку можно дать? Что первое приходит в голову(с учетом того, что нам еще пример надо построить)?

Подсказка 6

Самая глупая оценка снизу - это то, что радиус не меньше радиуса описанной окружности треугольника QRS. Найти радиус нетрудно(мы знаем все три стороны). Остается привести пример.

Подсказка 7

Чтобы достигалось равенство, надо, чтобы у нас в плоскости QRS лежал содержался центр сферы. Впишем туда треугольник QRS.

Подсказка 8

Остается доказать, что на сфере найдется точка P’, такая, что треугольники PRS и P’RS равны(это по сути и значит, что получен тетраэдр, который подходит под условия). То есть по сути надо поворачивать треугольник P’RS, равный треугольнику PRS, вокруг RS, до того момента, как точка P’ не станет принадлежать окружности.

Показать ответ и решение

Пусть A,B,C,D,E  - середины рёбер PR,RS,QS,PS,QR  соответственно. Из теоремы о средней линии треугольника следует, что ADCE  и ABDP  - параллелограммы. Они вписаны в окружности, являющиеся сечениями сферы плоскостями ACD  и PRS  , поэтому эти параллелограммы - прямоугольники. Угол RP S  — прямой; прямые PQ  и RS  перпендикулярны, так как P Q∥AE, AE ⊥CE, CE ∥RS.

Отметим в плоскости PRS  точку  ′
Q такую, что           ′
△QRS = △Q RS,  а точки P  и  ′
Q лежат по разные стороны от прямой RS  (треугольник  ′
QRS  может быть получен из треугольника QRS  поворотом вокруг прямой RS).

PIC

Из равенства треугольников QRS  и Q′RS  следует, что основания их высот, опущенных на RS  — это одна и та же точка (назовём её H ).  Плоскость HQQ ′ перпендикулярна RS  (так как QH ⊥ RS,Q′H ⊥ RS),  поэтому QQ′ ⊥ RS.  Поскольку QQ ′ ⊥ RS  и PQ ⊥ RS,  то плоскость P QQ′ перпендикулярна RS  и PQ ′ ⊥RS.

Значит, диагонали четырёхугольника PRQ ′S  пересекаются под прямым углом (в точке H  ). По теореме Пифагора

PR2 =P H2+ RH2,Q′R2 = Q′H2+ RH2,

Q′S2 =Q ′H2 +SH2,P S2 = PH2+ SH2

Следовательно,

P S2+ Q′R2 = PR2+ Q′S2

     ∘-------------
PR =  22+ (√2)2− 12 = √5

Из прямоугольного треугольника PRS  находим

     ∘---2----2  √-
RS =  PR  +P S =  7

Радиус сферы, описанной около пирамиды PQRS  , не меньше радиуса r  окружности, описанной около грани QRS  . Пирамида, для которой достигается равенство, существует. Докажем это.

PIC

Рассмотрим сферу радиуса r  и окружность - её сечение, проходящее через центр сферы. В сечении сферы указанной плоскостью получится окружность с диаметром RS  , в которую можно вписать прямоугольный треугольник PRS  . По теореме косинусов из треугольника PRS  находим, что

          QR2+ QS2− RS2   4+1 − 7   1
cos∠RQS  = --2⋅QR-⋅QS----= 2-⋅2-⋅1--=− 2

∠RQS  =120∘

По теореме синусов

      RS      √7-
r = 2sin∠RQS-= √3-
Ответ:

 RS = √7,R  =∘ 7-
         min    3

Ошибка.
Попробуйте повторить позже

Задача 5#33366

Рассмотрим всевозможные тетраэдры ABCD  , в которых AB = 2,AC =CB = 5,AD  =  DB  =6  . Каждый такой тетраэдр впишем в цилиндр так, чтобы все вершины оказались на его боковой поверхности, причём ребро CD  было параллельно оси цилиндра. Выберем тетраэдр, для которого радиус цилиндра - наименьший из полученных. Какие значения может принимать длина CD  в таком тетраэдре?

Показать ответ и решение

PIC

Пусть E  - середина AB.CE  и DE  - медианы равнобедренных треугольников ABC  и ABD  , a значит, биссектрисы и высоты. То есть AB ⊥ CE,AB ⊥ DE  . Значит, отрезок AB  перпендикулярен плоскости CDE  , следовательно, AB ⊥ CD  . Таким образом, AB  лежит в плоскости, перпендикулярной оси цилиндра (обозначим эту плоскость через α  ). Сечение цилиндра этой плоскостью - окружность, а  AB  является хордой этой окружности. Тогда радиус цилиндра минимален, если AB − диаметр. Отметим, что это возможно в силу того, что отрезки DE  и CE  длиннее, чем 12AB = 1  . Действительно, из треугольников ACE  и ADE  следует, что CE = √52−-12 = 2√6,DE = √62−-12 = √35  .

Рассмотрим тетраэдр, в котором AB  является диаметром цилиндра. Возможны 2 случая: точки C  и D  лежат по одну (этот случай представлен выше) или по разные стороны плоскости α  .

Пусть H  - проекция точек C  и D  на плоскость α  . Угол ∠AHB  =90∘ , так как он вписан в окружность и опирается на её диаметр. AH = BH  в силу равенства треугольников ACH  и BCH  . Тогда AH =  BH = √2  . По теореме Пифагора в прямоугольных треугольниках AHC  и DHC  соответственно: CH  =  √25− 2-=√23,DH = √36−-2= √34  .

Тогда, если точки C  и D  лежат по одну сторону от плоскости α  , то CD =DH  − CH = √34− √23  . Если точки C  и D  лежат по разные стороны от плоскости α  , то CD = DH + CH = √34+√23-  .

Ответ:

 √34-±√23

Критерии оценки

Доказано, что 𝐴𝐵 – диаметр цилиндра наименьшего радиуса – 2 балла; если при этом не проверено, что точки 𝐶 и 𝐷 могут лежать на боковой поверхности такого цилиндра (например, можно доказать, что треугольники 𝐴𝐵𝐶 и 𝐴𝐵𝐷 остроугольные; можно сделать, как в решении), то 1 балл вместо 2;

найдены оба значения 𝐶𝐷 – 3 балла;

найдено только одно значение 𝐶𝐷 – 1 балл вместо 3.

Ошибка.
Попробуйте повторить позже

Задача 6#33590

Сфера с центром O  вписана в трёхгранный угол с вершиной S  и касается его граней в точках K,L,M  (все плоские углы трёхгранного угла различны). Найдите угол KSO  и площадь сечения данного трёхгранного угла плоскостью KLM  , если известно, что площади сечений трёхгранного угла плоскостями, касающимися сферы и перпендикулярными прямой SO  , равны 1  и 4  .

Подсказки к задаче

Подсказка 1

Раз нас просят отыскать ∠KSO будет рассматривать плоскость (KSO), а, точнее, ту её часть, что заключена между прямыми SO и SK. Нам понадобятся точки P и Q — точки касания сферы с плоскостями, перпендикулярными SO. Пусть при это SP < SQ. Отметьте всё, что можно выразить через радиус сферы.

Подсказка 2

Рассмотрим отрезки, заключенные между точками пересечения SK и SO с касательными к сфере плоскостями. Если мы знаем отношение площадей сечений, то что можно сказать об отношении этих отрезков? (Вспомните: площади подобных треугольников относятся как квадрат коэффициента подобия). Пользуясь этим отношением вы сможете найти связь между SP и радиусом сферы.

Подсказка 3

Помните: радиус сферы, проведённый в точку касания, перпендикулярен касательной плоскости. А значит, мы можем найти синус ∠KSO, ведь всё нужное для этого мы выразили через радиус сферы.

Подсказка 4

Что можно сказать про (KLM) и SO? Проведите высоты к SO в △KSO, △MSO и △LSO — это поможет нам сделать важный вывод!

Подсказка 5

После того, как мы заметили перпендикулярность (KLM) и SO, можно поработать с подобными прямоугольными треугольниками: узнав отношение отрезков параллельных секущих плоскостей, заключённых между точками их пересечения с SO и SK, мы сможем сделать вывод и об отношениях площадей сечения!

Показать ответ и решение

Обозначим точки пересечения прямой SO  со сферой через P  и Q  (точка P  лежит на отрезке SO  , а Q  — вне него). Пусть радиус сферы равен r  . Треугольники OKS, OLS  и OMS  прямоугольные (углы при вершинах K, L,M  прямые, так как касательные перпендикулярны радиусам, проведённым в точку касания). Эти треугольники равны по катету и гипотенузе (OK  =OL = OM = R,SO  — общая), следовательно, ∠KSO = ∠LSO = ∠MSO (  пусть ∠KSO = α,SO= x)  . Высоты, опущенные из точек K,L,M  на гипотенузу  SO  , paвны, а их основания — одна и та же точка H  , лежащая в плоскости KLM  (назовём эту плоскость τ)  . Пусть β  и γ  касательные плоскости к сфере, проходящие через точки P  и Q  , а E  и F  — точки пересечения этих плоскостей с прямой SK  . По условию площади сечений трёхгранного угла этими плоскостями равны соответственно S1 =1  и S2 =4  . Рассмотрим сечение трехгранного угла и сферы плоскостью SKO  (см. рис. и обозначения на нем). Так как SH ⊥HK  и SH ⊥ HL  , то τ ⊥ SH  . Тогда сечения трёхгранного угла плоскостями τ,β  и γ  — подобные треугольники, плоскости которых параллельны (все они перпендикулярны SO )  .

Если Σ  — площадь треугольника, получающегося в сечении трёхгранного угла плоскостью KLM  , то из подобия Σ :S1 :S2 = KH2 :EP2 :FQ2.  Следовательно,          √-- √--
EP :FQ =  S1 : S2.  Тогда √ -- √--
  S1 : S2 = SP :SQ= (x− r) :(x+ r),  откуда     √-- √--
r= x√SS22−+√SS11,  a          √-- √--
sinα = rx = √SS22−+√SS11 = 13.  Отсюда ∠KSO  =arcsin13.

PIC

Далее, OH = rsinα,SH = SO− OH = -r- − rsin α,SP = SO− r=-r- − r.
                        sinα                   sinα  Значит, Σ :S1 = KH2 :EP2 =SH2 :SP2 = (-1 − sin α)2 :(-1 − 1)2 = (1+sinα)2 = 16,
                            sinα         sinα                  9  откуда Σ= 16.
    9

Ответ:

 ∠KSO =arcsin1,S = 16
            3    9

Ошибка.
Попробуйте повторить позже

Задача 7#43959

Дана усечённая пирамида ABCA  B C
     1 1 1  с боковыми рёбрами AA
   1  , BB
  1  , CC
   1  (ABC ∥A B C )
        1 1 1  , такая, что треугольник BB1C  — равносторонний. На ребре AA1  , перпендикулярном основанию ABC  пирамиды, лежит точка N  такая, что AN :NA1 = 1:2.  Сфера Ω  с радиусом √-
 5  проходит через вершины треугольника BB1C  и касается отрезка AA1  в точке N  .

(a) Найдите длину ребра BB1  .

(b) Пусть дополнительно известно, что             ∘ --
∠ABC  =arccos  25  . Найдите угол между прямой AA1  и плоскостью BB1C  , а также длину ребра A1B1.

Подсказки к задаче

Пункт а), подсказка 1

Введем обозначения: пусть E – вершина пирамиды, O – центр сферы ω, O₁ – центр описанной окружности треугольника BB₁C, а F – середина BC. Если треугольник BB₁C равносторонний, то чем еще будет являться точка O₁? А какие прямые будут проходить через нее?

Пункт а), подсказка 2

Верно, O₁ будет также точкой пересечения медиан, значит через нее пройдет прямая B₁F, Вы даже можете спокойно найти, в каком отношении точка O₁ поделит отрезок B₁F. А что тогда можно будет сказать про взаимное расположение прямой NO₁ и плоскости (ABC)?

Пункт а), подсказка 3

Конечно, прямая NO₁ будет параллельна плоскости (ABC). А теперь поработаем с нашей сферой! Из условия сфера касается AA₁ в точке N, а также проходит через вершины треугольника BB₁C, чему тогда будут перпендикулярны прямые OO₁ и ON?

Пункт а), подсказка 4

OO₁ ⊥ (BB₁C), ON ⊥ AA₁, а еще по условию AA₁ ⊥ (ABC), тогда ON будет параллельна плоскости (ABC)! Остается понять, что точка O₁ совпадает с точкой O. Для этого рассмотрите плоскость α, которая будет проходить через точку N параллельно плоскости (ABC), а также рассмотрите прямую l, которая перпендикулярна (BB₁C) и проходит через точку O₁. Что будет, если прямая l будет лежать в плоскости α?

Пункт а), подсказка 5

Действительно, такой ситуации быть не может, ведь тогда FB₁ ⊥ l, FB₁ ⊥ BC, а это две разные прямые, которые параллельны (ABC), тогда получается, что (BB₁C) ⊥ (ABC), а такого не может быть в нашей пирамиде! Тогда делаем вывод, что l пересекает α в одной точке, поэтому O₁ = O, что и хотелось показать. Теперь вовсе не составит труда найти сторону равностороннего треугольника BB₁C, если известно, что радиус его описанной окружности совпадает с радиусом сферы.

Пункт б), подсказка 1

Пусть O' – проекция O на (ABC), а B₁' – проекция B₁ на (ABC). Какой прямой в плоскости (ABC) будет принадлежать точка B₁'?

Пункт б), подсказка 2

Конечно, B₁' ∈ AB, можем даже узнать, в каком отношении точка O' будет делить отрезок FB₁' (покажите, что оно будет равно FO : OB₁). Тогда теперь можно будет найти длину отрезка B₁'F, нужно всего лишь показать, что треугольник BB₁'C равнобедренный, доказав равенство треугольников B₁B₁'B и B₁B₁'C. И нужный угол легко найдется, если рассмотреть угол между B₁B₁' || A₁A и нужной плоскостью.

Пункт б), подсказка 3

Пусть T – проекция O' на AB. Легко понять, что A₁B₁ = AB₁', тогда задача поиска A₁B₁ сведется к тому, что нужно будет найти AB₁' = AT + TB₁'. Найдите длину O’T, поработав с треугольником BB₁'C, а зная O’T, можно будет легко найти AT и TB₁', используя теорему Пифагора, а также факт, что AO' = ON.

Показать ответ и решение

PIC

Отметим точку E  в качестве вершины пирамиды, точку O  в качестве центра ω  , точку O1  в качестве центра описанной окружности треугольника BB1C  и F  в качестве середины BC  . Так как BB1C  равносторонний, то O1  это еще и центр пересечения медиан, а значит, B1F  проходит через O1  и FO1 :O1B1 = 1:2  и NO1∥ABC  . Так как ω  проходит через вершины треугольника BB1C  и касается отрезка AA1  в точке N  , то OO1⊥BCC1  и ON ⊥AA1  . Мы знаем, что AA1 ⊥ABC  и поэтому NO ∥ABC  . Получается, что мы знаем, что точка O  лежит на плоскости α  , проходящей через N  и параллельной ABC  , и лежит на прямой l  , перпендикулярной BB1C  и проходящей через O1  . Значит, либо l  принадлежит α  , но тогда FB1  перпендикулярна двум разным прямым параллельным ABC  (BC  и l  ) и тогда все три стороны перпендикулярны основанию, а такого не бывает, либо l  и α  пересекаются в одной точке и O1 =O  . Тогда BO =BO1 = √5  и BB1 = √15  (по формуле для равностороннего треугольника).

PIC

Спроецируем точки O  и B1  на плоскость ABC  . Тогда так как проекция A1  на ABC  это A  , то         ′
A1B1∥AB 1  и поэтому  ′
B ∈ AB  . Также можно заметить             ′  ′ ′
F O:OB1 = FO :O B1 = 1:2  .

Прямоугольные треугольники B1B′1B  и B1B′1C  равны по катету и гипотенузе, поэтому BB′1 =CB ′1  . Значит, высота в равнобедренном треугольнике BB ′1C  равна B ′1F  , так как F  середина BC  и равна              √--∘--  ∘--
BF |tgB ′1BF |= -125 32 =  458  . Тогда

                                                     ∘--
                  ′          ′          (B′1F-)       -458-  1--
∠(AA1,BCB1)= ∠(B1B1,BCB1 )= ∠B1B1F =arcsin B1F  = arcsin √45 = √2
                                                      2

Значит, ∠(AA1,BCB1 )= π4  . Тогда            ∘ --
FB ′1 = F√B21=  485

Пусть T  — проекция O′ на AB  . Тогда O′T = O′B′cosB ′O ′T = 2B′Fcos1∠B ′O′C = 2B′FcosB ′BC = 2∘ 45∘-2= 1
        1    1     3 1   2   1     3 1     1    3  8   5  и       ∘----------- ∘ 3-
B1′T =  O′B′12− O ′T2 = 2  . С другой стороны, поскольку           √-
AO ′= NO =  5  , то     √----------
AT = AO ′2− O′T2 = 1  . Отсюда                         ∘ --
A1B1 =AB ′1 = AT +TB ′1 = 2+ 32  .

Ответ:

 (a)√15,

  π    ∘-3
(b)4,2+   2

Ошибка.
Попробуйте повторить позже

Задача 8#33674

На рёбрах AC,BC, BS,AS  правильной треугольной пирамиды SABC  с вершиной S  выбраны точки K,L,M,N  соответственно. Известно, что точки K,L,M,N  лежат в одной плоскости, причём KL = MN = 2,KN = LM = 18  . В четырёхугольнике KLMN  расположены две окружности Ω1  и Ω2  , причём окружность Ω1  касается сторон KN,KL  и LM  , а окружность Ω2  касается сторон KN,LM  и MN.  Прямые круговые конусы ℱ1  и ℱ2  с основаниями Ω1  и Ω2  соответственно расположены внутри данной пирамиды, причём вершина P  конуса ℱ1  лежит на ребре AB  , а вершина Q  конуса ℱ2  лежит на ребре CS  .

а) Найдите ∠SAB

б) Найдите длину отрезка CQ  .

Источники: Физтех-2019, 11.7, (см. olymp.mipt.ru)

Показать ответ и решение

PIC

Противоположные стороны четырёхугольника KLMN  попарно равны, так что он параллелограмм. Поскольку плоскость (KLMN  )  пересекает плоскости (ABC )  и (ABS )  по параллельным прямым KL  и MN  , эти прямые параллельны прямой пересечения этих плоскостей - то есть AB  . Аналогично, NK ∥LM ∥SC  . В правильной треугольной пирамиде скрещивающиеся рёбра перпендикулярны друг другу, поэтому SC ⊥AB  , а KLMN  − прямоугольник. Следовательно, радиусы окружностей Ω1  и Ω2  равны 1  .

Отсюда также следует, что прямоугольник KLMN  симметричен относительно плоскости α  , содержащей ребро SC  и середину AB  . Тогда и конусы ℱ1  и ℱ2  также симметричны относительно этой плоскости. Поэтому P  - середина AB  .

Обозначим через X  и Y  середины сторон KL  и MN  соответственно, а через O1  и O2− центры окружностей Ω1  и Ω2  соответственно; эти четыре точки лежат на оси симметрии прямоугольника KLMN  , параллельной KN  , а значит - в плоскости α  . Более того, XY ∥SC  , то есть треугольники PCS  и P XY  подобны.

Пусть AB = BC = CA = 2a,SA =SB = SC =ℓ,ν = a∕ℓ  . Тогда CP = a√3,SP = √ℓ2−-a2  . Поскольку XY = KN = 18  , из подобия получаем XP-= XY-
CP   CS  , т.е. X√P-= 18,XP = 18√3a-= 18ν√3-
a3   ℓ        ℓ  . Аналогично, Y-P= XY-,YP-= 18,YP = 18√-ℓ2−a2= 18√1−-ν2
 SP   CS  SP   ℓ         ℓ  . C другой стороны, так как конус ℱ −
  1 прямой, имеем PO  ⊥XY
  1  , причём XO  = 1KL = 1,Y O = XY − XO = 17
   1  2         1         1  . Отсюда 172− 12 =O Y 2− O X2 = (O Y2+ O P2)− (O X2 + O P2)=P Y2− PX2 =182(1− ν2− 3ν2)
          1     1      1     1       1     1 , или 16⋅18 =182(1− 4ν2) , откуда     1
ν = 6  . Значит,            AP-              1
∠SAB = arccosAS = arccosν = arccos6  .

Итак, ℓ= 6a  , и из подобия имеем

 2   KL   CX      XP      XY      18     3
2a = AB-= CP-= 1− CP-= 1− CS- =1− -ℓ =1− a,

откуда a= 4  и ℓ= 24  . Пусть PO1  пересекает SC  в точке H  . Тогда PH − высота треугольника SCP  , причём (поскольку XY ∥CS  )      XO
CCHS-= XY1-= 118-  . Значит, CH  = S1C8 = 43  . Поскольку O2Q⊥ XY,H1O2Q  - прямоугольник, так что HQ = O1O2 = 16  . Отсюда CQ = CH + HQ = 523-  .

Ответ:

а) ∠SAB = arccos1;
            6  б) CQ = 52-
     3

Ошибка.
Попробуйте повторить позже

Задача 9#43960

Основание треугольной пирамиды ABCD  — правильный треугольник ABC.  Объём пирамиды равен 2√5
 3  , а её высота, проведённая из вершины D  , равна 3.  Точка M  — середина ребра CD.  Известно, что радиусы сфер, вписанных в пирамиды ABCM  и ABDM  , равны между собой.

(a) Найдите возможные значения угла между гранями пирамиды при ребре AB.

(b) Найдите все возможные значения длины ребра CD  , если дополнительно известно, что грани BCD  и ABC  взаимно перпендикулярны.

Источники: Физтех-2017, 11.7 (см. olymp.mipt.ru)

Подсказки к задаче

Пункт а), подсказка 1

Как можно применить данные о равенстве радиусов сфер, вписанных в пирамиды? В условиях, когда известен объём, хочется подумать о формуле, связывающей радиус с объёмом и площадью поверхности. (Если такая вам неизвестна, попробуйте её вывести по аналогии с планиметрическим S = p*r)

Пункт а), подсказка 2

Итак, что мы видим: одна грань у этих пирамид общая, две другие попарно равновелики, так как М является серединой CD. Что в этом случае можно сказать об оставшейся паре граней?

Пункт а), подсказка 3

У нас появились равные по площади грани! Известный объём пирамиды и высота к одной из них помогут нам отыскать площади этих граней. Нетрудные вычисления откроют нам ещё и длину высоты грани ADB.

Пункт а), подсказка 4

Проведите высоту к основанию АВС Данной пирамиды и её апофему в грани ADB. Какая теорема поможет нам достроить имеющуюся конструкцию до линейного угла двугранного угла? Мы знаем достаточно, чтобы найти триг. функцию от искомого угла! Не забывайте только — нам никто не говорил что искомый уголочек будет острым ;)

Пункт б), подсказка 1

Какой вывод о расположении высоты пирамиды мы можем сделать из перпендикулярности двух её граней?

Пункт б), подсказка 3

Осталось снова применить теорему Пифагора и искомое ребро у нас в кармане :) Только будьте внимательны: совсем не обязательно высота нашей пирамиды будет падать именно на ребро, а не на его продолжение!

Показать ответ и решение

Воспользуемся формулой радиуса вписанной сферы r= 3V
   S  , где V  — объём, а S  — площадь поверхности пирамиды. Объёмы пирамид ABCN  и ABDM  равны (грань ABM  общая, а вершины C  и D  равноудалены от плоскости ABM  ); кроме того SADM = SACM  и SBDM  =SBCM  (медиана делит площадь треугольника пополам). Значит, равенство сфер, вписанных в пирамиды ABCN  и ABDM  , эквивалентно условию SABD = SABC  или равенству высот, проведённых к стороне AB  в треугольниках ABD  и ABC  .

PIC

Пусть DH  высота пирамиды, а DK  высота в треугольнике ABC  . Объём пирамиды равен √253-  , а её высота из вершины D  равна 3, то есть DH  . Значит, площадь основания пирамиды равна 2√53  . Тогда сторона основания AB = 1√03  , а высота треугольника ABC  равна 5. Значит, DK  также равно 5. Из прямоугольного треугольника DHK  находим KH = √KH2-−-DH2-= 4  , т.е. точка H  находится на расстоянии 4 от прямой AB  (H  лежит на одной из двух прямых, параллельных AB  , на расстоянии 4 от неё). Тем самым, угол между гранями при ребре AB  равен arccos± 4
      5  .

PIC

Из условия, что грани BCD  и ABC  взаимно перпендикулярны, следует, что H  лежит на BC  . Так как KH = 4  , то       8
HB = √3  . Значит CH = CB ±HB  = 2√3  или 1√83  . Тогда       ---------- ∘ --
CD = √CH2 +HD2  =  331  или   --
3√ 13  .

Ответ:

 (a) arccos±4
         5

  √3√1
(b)  3  или  √--
3 13

Ошибка.
Попробуйте повторить позже

Задача 10#51631

Дана прямая треугольная призма ABCA  B C .
     1 1 1  Сфера с диаметром A B
 1 1  пересекает рёбра A C
 1 1  и B C
  1 1  соответственно в точках    T
    1  и L1,  отличных от вершин призмы. Отрезки BT1  и AL1  пересекаются в точке S,  и при этом AL1 =7,ST1 = 2.

(a) Найдите угол ST1A1  .

(b) Найдите отношение A1T1 :T1C1  .

(c) Пусть дополнительно известно, что AC = 5.  Найдите объём призмы.

Источники: Физтех, 11.7 (см. olymp.mipt.ru)

Показать ответ и решение

PIC

(a) Точки T1  и L1  лежат на окружности с диаметром A1B1;  значит, ∠A1L1B1 = 90∘,∠A1T1B1 = 90∘ (т.е. A1L1  и B1T1− высоты треугольника A1B1C1).  Прямая B1T1  — это проекция прямой BT1  на плоскость основания, при этом B1T1 ⊥ A1C1.  Тогда по теореме о трёх перпендикулярах BT1 ⊥ A1C1,  т.e. ∠ST1A1 = 90∘.

(b) Поскольку прямые BT1  и AL1  пересекаются, то все четыре точки T1,L1,A  и B  лежат в одной плоскости (назовём её α  ). Значит, прямые AB  и T1L1  лежат в одной плоскости α,  а так как они не пересекаются (поскольку лежат в параллельных друг другу основаниях призмы), то AB ∥T1L1.  Значит, T1L1∥A1B1.  Трапеция A1T1L1B1  вписана в окружность, следовательно, она равнобокая, тогда углы при её основании A1B1  равны, и поэтому треугольник A1B1C1  равнобедренный (A1C1 =B1C1).

Треугольники T1L1S  и ABS  подобны по двум углам. Из равенства треугольников BB1T1  и AA1L1  следует, что AL1 = BT1,  поэтому оба треугольника T1L1S  и ABS  равнобедренные с основаниями T1L1  и AB  соответственно. Значит, T1L1 :A1B1 = T1L1 :AB =T1S :SB = T1S :(T1B− T1S)= T1S :(AL1 − T1S)= 2:5,  откуда A T   C A −T C   C A      A B      5     3
-T11C11 =-1-1T1C11-1= T11C11 − 1= T11L11 − 1= 2 − 1= 2

(c) Если AC = 5,  то                               ----------
C1T1 = 2,A1T1 =3,B1C1 = 5;B1T1 =∘ B1C2− C1T2= √21
                                 1     1  ;        ----------
BB1 = ∘ BT2− B1T2= 2√7
         1     1  . Значит, площадь основания призмы равна SA B C = 1⋅5⋅√21,
  1 1 1  2  объём призмы равен V = SA B C ⋅BB1 = 35√3-
      11 1  .

Ответ:

(a) 90∘,

(b) 3 :2,

(c) V = 35√3-

Ошибка.
Попробуйте повторить позже

Задача 11#51630

В основании треугольной пирамиды SABC  лежит прямоугольный треугольник ABC  с гипотенузой BC = 2√3  . Сфера ω  касается плоскости основания пирамиды и касается всех трёх её боковых рёбер в их серединах. Пусть Ω  — сфера, описанная около пирамиды SABC.

(a) Найдите расстояние между центрами сфер ω  и Ω  .

(b) Найдите отношение радиусов сфер ω  и Ω  .

(c) Пусть дополнительно известно, что ∠SAB = arccos1.
            4  Найдите объём пирамиды SABC  .

Показать ответ и решение

PIC

Пусть O  — центр сферы ω;K,L,M  — основания перпендикуляров, опущенных из точки O  на ребра AS,BS,CS  соответственно; SH  — высота пирамиды SABC; r  и R  — радиусы сфер ω  и Ω  соответственно.

a) Поскольку точка O  лежит на серединном перпендикуляре к отрезку AS,  она равноудалена от концов этого отрезка, т.е. OA =OS.  Аналогично OB =OS  и OC =OS.  Значит, OA = OB =OC = OS,  поэтому точка O  является центром сферы Ω  . Следовательно, расстояние между центрами сфер равно нулю.

b) Из равенства прямоугольных треугольников SOK  , SOL  и SOM  (OK = OL = OM = r,OS  — общая сторона) следует, что SK = SL =SM.  Поскольку точки K, L,M  — это середины боковых рёбер пирамиды, отсюда получаем, что боковые рёбра равны между собой. Тогда высота пирамиды проходит через центр окружности, описанной около основания (действительно, ΔSHA  =ΔSHB  = ΔSHC  по катету и гипотенузе, откуда AH = BH = CH  ). Но в пирамиде OABC  боковые рёбра OA, OB,OC  также равны между собой как радиусы сферы Ω  ; значит, и её высота, проведённая из вершины O  проходит через центр окружности, описанной около основания. Таким образом, высота пирамиды SH  проходит через точку O.  Кроме того, точка H  является центром окружности, описанной около основания. Поскольку треугольник ABC  прямоугольный, H  — это середина гипотенузы BC.  Так как отрезок OH  перпендикулярен плоскости основания, он равен радиусу r  сферы ω.

Для нахождения соотношения между радиусами рассмотрим прямоугольный треугольник SHC.  Точка M  — середина гипотенузы SC,  на катете SH  находится точка O,  причём SO = CO =R  , OH = OM = r.  Треугольники CHO  , CMO  и SMO  равны по катету и гипотенузе, следовательно, CH = CM  =SM.  Значит, CH = 1SM, ∠HSC = 30∘.
     2  Тогда из треугольника SOM  находим, что r:R = 1:2.

c) SC = 2CH = BC =2√3,  поэтому треугольник SBC  — равносторонний, SH = SB ⋅ √3= 3.
         2  B равнобедренном треугольнике SAB  известны боковые стороны          √ -
SB =SA = 2 3  и угол при основании            1
∠SAB = arccos4.  Отсюда находим, что                   √-
AB = 2SA ⋅cos∠SAB =  3  . По теореме Пифагора для треугольника ABC  находим, что AC =3,  поэтому       1    √-
SABC =2 ⋅3⋅ 3;  объём пирамиды V  равен 1    3√3-  3√3
3 ⋅3⋅ 2 =  2 .

Ответ:

(a) 0

(b) 1 :2

(c) 3√3
 2

Ошибка.
Попробуйте повторить позже

Задача 12#51629

На ребре CC
   1  правильной треугольной призмы ABCA  B C
     1 1 1  выбрана точка M  так, что центр сферы, описанной около пирамиды MAA1B1B,  лежит в грани AA1B1B.  Известно, что радиус сферы, описанной около пирамиды MABC,  равен 5,  а ребро основания призмы равно  √-
4 3  . Найдите:

(a) отношение объёма пирамиды MAA1B1B  к объёму призмы

(b) длину отрезка MC

(c) площадь полной поверхности призмы

Источники: Физтех-2012, 11.6 (см. olymp.mipt.ru)

Показать ответ и решение

PIC

Введём обозначения: K  — центр грани ABC; L− середина ребра AB; Q  — центр сферы, описанной около пирамиды MAA1B1B  (т.е. Q  — центр грани AA1B1B  ); O  — центр сферы, описанной около пирамиды MABC  .

(a) -VMABC---= 1 ⋅ MC-;-VMA1B1C1-= 1⋅ MC1-⇒ VMABC+VMA1B1C1 = 1⋅ MC+MC1 = 1,
VABCA1B1C1  3  CC1  VABCA1B1C1   3 CC1      VABCA1B1C1     3   CC1     3  3начит, объём пирамиды MAA1B1B  составляет две трети объёма призмы.

(b) Сторона равностороннего треугольника ABC  равна  √-
4 3  , следовательно,       √-  1√-
CK  =4 3 ⋅ 3 = 4  , как радиус описанной окружности.

Рассмотрим прямоугольную трапецию CKOM  . В ней известны стороны CK  =4,OM = 5  и диагональ OC = 5.  По теореме Пифагора из треугольника OCK  находим, что OK = 3.  Опустим из точки O  перпендикуляр OH  на отрезок MC  . Тогда MC  =2 ⋅CH  =2⋅KO = 6.

(c) Обозначим BB1 =h.  Тогда

           ∘ ------                        ∘-----------
    h        h2         ∘ --2-----------2   ( h   )2
QL = 2,QB =   4 + 12,QM  =  CL + (QL− MC ) =    2 − 6 + 36

Отрезки QB  и QM  равны как радиусы сферы. Решая получающееся уравнение, находим, что h = 10.  Тогда площадь поверхности призмы       √-   √-         √-    √ -
S = 2⋅43⋅(4 3)2 +3⋅10⋅4 3= 144 3.

Ответ:

(a) 1:3

(b) 6

(c) 144√3

Ошибка.
Попробуйте повторить позже

Задача 13#69438

В правильной четырёхугольной пирамиде SABCD  сторона основания ABCD  равна √2  , высота SO  равна 2.  Точка K  лежит на высоте SO  , причём KS :KO = 1:3  . Через точку K  проведена плоскость Π  , перпендикулярная прямой SA  . Найдите площадь сечения пирамиды плоскостью Π  , расстояние от точки D  до плоскости Π  и угол между плоскостью Π  и прямой SD  .

Подсказки к задаче

Подсказка 1

Давайте начнём с поиска угла! Во-первых, давайте найдем, чему равны AO и AS - это можно сделать, исходя из условия, которое нам дано, и воспоминаний о теореме Пифагора. Если плоскость пересекает ребро AS в точке M, а ребро SD в точке P, то задачу можно переформулировать, как поиск угла SPM, а угол SMP мы знаем из перпендикулярности! Тогда как можно найти SPM?

Подсказка 2

SPM = 90 - MSP = 90 - ASD! Но мы знаем что-то про угол ASD - некоторые стороны в треугольнике, где он находится. Тогда мы можем узнать его синус!

Подсказка 3

Расстояние DP = DS - SP, а эти два расстояния попроще искать. DS мы уже знаем, а SP в треугольнике, где мы знаем угол, какие-то стороны можем тоже попробовать найти! Например, чтобы найти SP, попробуйте сначала найти SM и MP, чтобы вычислить расстояние

Подсказка 4

Площадь искомого треугольника можно найти, зная MN, MP и синус угла между ними. Попробуйте найти его, используя теорему косинусов! Для этого нам потребуются PM и PN, а значит надо найит PN (PM искали в прошлом пункте). А PN можно найти из теоремы косинусов в PNS!

Показать ответ и решение

Имеем AO =1,AS =√5  . Пусть 2α =∠ASC, 2β = ∠ASD  . Тогда

     1       -2-      1--      4        3
tgα= 2,cosα= √5,sinα = √5,sin2α= 5,cos2α = 5

sinβ = √1-,cosβ = √-3-,sin 2β = 3,cos2β = 4,tg2β = 3
       10        10       5       5       4

Пусть плоскость П пересекается с прямыми AS,CS  и DS  в точках M, N  и P  соответственно.

PIC

В плоскости ASC  из прямоугольного △KSM  имеем

               1
SM  =SK cosα= √5-

Далее из прямоугольного △NMS  имеем

      SM    √5                 4
SN = cos2α-= -3 ,MN =SN sin2α = 3√5-

В плоскости ASD  из прямоугольного △P MS  имеем

                              √-
MP  = SM tg2β = √3-,SP =-SM--= -5-
               4 5     cos2β    4

Так как SM  перпендикулярно плоскости Π  , то углом между прямой SD  и плоскостью Π  является

∠SP M = π− 2β = arcsin 4
        2           5

Так как

              √-  √5-  3√5
DP = SD − SP = 5− -4-= -4-,

то расстояние от точки D  до плоскости Π  равно

DP sin∠SP M = 3√--
              5

В плоскости CDS  из △PNS  по теореме косинусов находим

PN2 = 5-+ 5− 5 ⋅ 4=-29-
      16  9  6  5  9⋅16

Рассмотрим △MP N  . Пусть ∠PMN  = φ  . Тогда по теореме косинусов получаем

-29- = -9--+ 16-− 2cosφ
9 ⋅16   16 ⋅5   9⋅5  5

145-  9⋅9+16⋅16-
9⋅16 =    9⋅16   − 2cosφ

      81+256− 145    192   2
cosφ = ---18⋅16----= 18⋅16 = 3

Следовательно,       √5
sinφ = 3-  , и искомая площадь сечения равна

              -1-
MP ⋅MN ⋅sin φ= 3√5
Ответ:

Площадь равна 1√--
35

Расстояние равно √3-
  5

Угол равен     4
arcsin5

Ошибка.
Попробуйте повторить позже

Задача 14#51628

Основанием треугольной пирамиды SABC  является правильный треугольник ABC  со стороной 8.  Боковое ребро SC  перпендикулярно основанию и имеет длину 15.  Сфера, центр O  которой лежит в плоскости SBC,  касается рёбер SA  , AB  и AC  в точках A1,B1  и C1  соответственно. Найдите AA1,  расстояние от точки O  до ребра BC,  и радиус сферы.

Источники: Физтех-2010, 11.6 (см. olymp.mipt.ru)

Показать ответ и решение

PIC

Обозначим AB = 2b =8,SC =h =15.  Пусть E  и K− проекции точки O  на прямые BC  и SC  соответственно. Пусть OE = x,OA1 = OB1 =OC1 = R  — радиус сферы. Так как OE  — перпендикуляр к плоскости ABC  , а OB1 ⊥ AB,  то по теореме о трёх перпендикулярах получаем B1E  ⊥AB  . Аналогично C1E ⊥ AC.  Из равенства прямоугольных треугольников OB1E  и OC1E  следует, что B1E =C1E.  Из равенства прямоугольных треугольников BB1E  и CC1E (  так как            )
∠B = ∠C = π3 получаем, что BE = CE = b= 4.  Тогда                                  √-
B1B = b2 =C1C,C1A =B1A = 32b,B1E = b23.  Кроме того, из равенств отрезков касательных, проведённых к сфере из точки A,  следует, что AA1 =AB1 = 32b= 6  Для нахождения x  и R  выразим SO  из треугольников SKO  и SOA1.  Так как OK = CE = b  и SK = h− x,  то SO2 = (h− x)2+b2 = OA21+SA21,  где OA21 = R2 = OE2 +B1E2 =x2+ 34b2,SA1 = SA− AA1 =√h2-+4b2− 32b.  Следовательно,                    (            )
(h − x)2+b2 = x2+ 34b2+ √h2-+4b2− 32b ,  откуда получаем

x2 +h2− 2xh+ b2 = x2+ 3b2+ h2+4b2+ 9b2− 3b∘h2-+4b2
                   4            4

T. e. x = 3b(√h2+-4b2− 2b)= 12(√15⋅15+-64− 8)= 2(17− 8)= 18.
    2h                30               5         5  Тогда R =∘x2-+-3b2-=∘ 18⋅18+-3⋅16= 4√39
         4      25   4      5  .

Ответ:

 AA = 6,ρ= 18,R= 4√39
   1       5      5

Ошибка.
Попробуйте повторить позже

Задача 15#70628

В пирамиде SABC  каждый из углов ASB  и ASC  равен arccos√1
      5  , угол BSC  прямой, ребро SB  равно a  . Центр сферы, вписанной в пирамиду SABC  , лежит на высоте SD  . Найти SA,SD  и радиус сферы, вписанной в пирамиду SABC  .

Источники: Вступительные в МФТИ - 2006

Подсказки к задаче

Подсказка 1

Центр нашей сферы лежит на высоте, а уголки ∠ASB и ∠ASC равны. Не наблюдается ли тут какая-нибудь симметрия...

Подсказка 2

Действительно, наша картинка симметрична относительно плоскости SAD! Тогда SB=SC=a и AB=AC. Хочется доказать, что D будет центром вписанной окружности треугольника △ABC. Пускай A₁, B₁, C₁- основания перпендикуляров, опущенных из точки D на ВС, AC и AB соответственно. Что мы можем сказать про треугольники △SC₁D, △SB₁D и △SA₁D?

Подсказка 3

Они равны, ведь имеют общий катет SD, а острые уголочки, прилежащие к нему, равны в силу того, что SD содержит центр вписанной сферы. Тогда и высоты SC₁, SB₁ и SA₁ равны между собой ⇒ SC₁=SB₁=SA₁=a/√2. Как нам найти SB...

Подсказка 4

В треугольнике △ASB высота SC₁ равна a/√2, а сторона SB=a ⇒ ∠SBA=45°. Тогда в треугольнике △SAB мы знаем два угла и сторону ⇒ можем найти остальные стороны. Получается, что SA=a*√5/3 и AB=a*2√2/3. Т.к. SB=SC ⇒ A₁- середина BC ⇒ AA₁- высота △ABC. Если бы мы знали DA₁, мы бы легко нашли SD...

Подсказка 5

Т.к. DA₁ равен радиусу вписанной окружности треугольника △ABC, то нам необходимо просто посчитать его площадь. Его площадь равна AA₁*BC/2. Тогда r=AA₁*BC/(AB+BC+AC)=a/√14 ⇒ из теоремы Пифагоры для △SDA₁: SD=a*√(3/7). А как будем искать радиус вписанной сферы?

Подсказка 6

Давайте отразим A₁ относительно D и получим точку A₂. Нетрудно заметить, что радиус вписанной окружности треугольника △SA₁A₂ совпадает с радиусом сферы. В этом треугольнике мы уже все знаем, поэтому для вас найти его будет проще простого!

Показать ответ и решение

PIC

Так как центр вписанной в пирамиду сферы лежит на её высоте SD  , то SD  образует равные углы с плоскостями ASB, ASC, BSC  . Кроме того, из симметрии следует, что SB =SC = a, AB =AC  .

Проведём плоскость через SD  перпендикулярно AB  . Пусть эта плоскость пересекает AB  в точке C1  . Аналогично построим точки B1,A1  . Заметим, что треугольники SDC1, SDB1, SDA1  равны, так как они прямоугольные, имеют общий катет SD  , а углы DSC1, DSB1, DSA1  равны, как углы между SD  и плоскостями ASB, ASC, BSC  . Тогда SC1 =SB1 = SA1  и эти отрезки являются высотами боковых граней пирамиды. Из прямоугольного треугольника SBC  находим его высоту SA1 = a√2  .

Рассмотрим треугольник ASB  . Пусть SA = b, ∠ASB =α  . Тогда по теореме косинусов

                      ∘ ------------
    ∘ -2--2----------    2  2  -2-
AB =  a + b− 2abcos(α)=  a + b− √5 ab
(1)

Так как SC1 =SA1 = a√2  и AB ⋅SC1 = SA⋅SB ⋅sin(α),  то

   ∘------------
√a- a2+ b2− 2√-ab= ab 2√- =⇒   a2+b2− √2ab= 8b2
  2          5       5               5    5

Полагая a
 b = x,  получаем уравнение

    2    3
x2− √5x− 5 =0

Откуда

    1   ∘1---3   3              a   a√5
x= √5-+  5 + 5 = √5-;    SA= b= x = -3--

Тогда из (1)  получаем       √-
AB = 2a32-  . Так как SB =SC  , то A1  является серединой BC,  а из равенства AB = BC  следует, что  AA1  является высотой треугольника ABC,  причём       ∘-----------
AA  =  AB2 − ( BC)2 = a∘-8−-1= a∘ 7
   1          2        9  2  3  2  .

Пусть r  — радиус вписанной окружности треугольника ABC  .

Тогда r =DA  = DB  = DC
      1     1    1  . Из равенства (AB +AC + BC)r= AA  ⋅BC :
                  1

( 4a√2   √-)    a∘-7  √-                a
  -3--+ a 2  r= 3  2 ⋅a 2 =⇒   r= DA1 = √14

Тогда

                    ------   --
     ∘---2----2   ∘ 1  1-   ∘ 3
SD =  SA 1− DA 1 = a 2 − 14 = a 7

Рассмотрим треугольник SDA1  . Отразив точку A1  симметрично SD,  получим точку A2  . Пусть радиус сферы равен R  . Заметим, что он равен радиусу окружности, вписанной в треугольник A2SA1  . Тогда (2r +2SA1)R= 2r⋅SD :

( ∘ --  √-)     ∘--  ∘--            √-
 a  2+ a 2 R = a  2⋅a 3   =⇒  R = -a-3√-
    7             7   7           7+  7
Ответ:

 SA = a√5,SD = a√21,R= a√3(7−√7)
      3        7        42

Ошибка.
Попробуйте повторить позже

Задача 16#80061

В кубе ABCDA  B C D
      1 1 1 1  с ребром a  через точку A  параллельно прямой BD  проведена плоскость P  , образующая с прямой AB  угол, равный     -1√-
arcsin2 2  . Найти площадь сечения куба плоскостью P  и радиус шара, касающегося плоскости P  и граней ABCD  , BCC1B1  и DCC1D1  .

Показать ответ и решение

Плоскость P  пересечет грань BB D D
  1 1  куба по прямой EF ∥BD,  где E ∈DD  ,a
      1  ребро CC −
  1 в некоторой точке K  (см. рис. a  ). Пусть Q  - середина BD, M  и N − основания перпендикуляров, опущенных соответственно из точек D  и Q  на плоскость P.  Тогда DM  = QN,  так как BD∥P,  и N ∈AK.  По условию             √2-
∠DAM  = arcsin 4 ,AD = a,  откуда находим         √2   a√2
DM  =AD  4 =  4 = QN.  Из треугольника AQN,  в котором     a√2
AQ = 2       AQ-
QN =  2 ,  находим         π
∠QAN  = 6,  и поэтому         -1--  2√6
AK = AC cosπ6 =  3 a  Пусть S  - площадь сечения куба плоскостью P,  тогда    1
S = 2AK ⋅EF,  где            √-
EF = BD = a 2,  и поэтому     √ -
S = 233 a2

PIC

Найдем радиус R  вписанного шара. Заметим, что центр О шара лежит на биссектрисе угла KAC  , а проекция L  точки O  на грань ABCD  принадлежат AC.  Из треугольника AOL,  в котором        1       π-
∠OAL = 2∠KAC = 12,OL = R,  находим          π-
AL = Rctg 12,  где    π   1+cosπ6     √ -
ctg 12 =-sinπ6--=2 +  3.  Так   как       √-
LC =R  2,AC = AL +LC,  тo  √-    (  π   √-)
a 2= R  ctg12 + 2

Замечание. Искомый радиус можно найти, заметив что он равен радиусу шара, вписанного в треугольную пирамиду KCE1F1,  где   E1− точка пересечения прямых KE  и CD,F1− точка пересечения прямых KF  и CB,  используя формулу    3V
R =Sn  где V  - объем пирамиды KCE1F1, Sn− ее полная поверхность.

Ответ:

 2a√2,-a√√2√-
  3 2+ 2+  3

Рулетка
Вы можете получить скидку в рулетке!