Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Разделы подтемы Росатом
Подтемы раздела росатом
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#83311

Медианы оснований треугольной призмы ABCA B  C
     1 1 1  пересекаются в точках O  и O
 1  соответственно. На отрезке OO
  1  взята точка P  так, что O1P :PO = 3:5  . Через точку P  проведена прямая параллельная диагонали A1C  боковой грани призмы. Найти длину отрезка этой прямой, расположенного внутри призмы, если длина диагонали A1C  равна 2.

Подсказки к задаче

Подсказка 1

Рассмотрим сечение призмы XYZT, проходящее через OO₁ и параллельное грани ACC₁A₁. Прямая, проходящая через точку Р и параллельная А₁С, будет лежать как раз в этом сечении. А искомый отрезок - это часть этой прямой, ограниченная четырехугольником XYZT. А какой фигурой является XYZT? Как относятся ее стороны к сторонам призмы?

Подсказка 2

Верно, XYZT - параллелограмм. ZT = XY = A₁A, XT = YZ = 2/3 * AC, так как точка пересечения медиан делит медианы в отношении 2 к 1. Теперь нужно подумать, с помощью чего мы можем "перенести" плоскость ACC₁A₁ на плоскость XYZT?

Подсказка 3

С помощью гомотетии! Сделаем гомотетию в точке В₁ с коэффициентом 2/3. Подумайте, куда перейдут точки, лежащие в плоскости ACC₁A₁.

Подсказка 4

Например, точка А₁ перейдет в точку Х. Постройте прямые, параллельные А1С, через точки Х и Z. Чему будут равны отрезки этих прямых, отграниченные параллелограммом XYZT? Равна ли искомая прямая этим отрезкам?

Показать ответ и решение

Рассмотрим сечение призмы XY ZT  , проходящее через OO
  1  и параллельное грани ACC  A
    1 1  . Это параллелограмм, а OO
  1  — его средняя линия.

Сделаем гомотетию в точке B1  с коэффициентом 2
3  . Тогда точки A1  и C1  перейдут в X  и T  , потому что точка пересечения медиан делит медиану в отношении 2  к 1  . Точка Q  перейдёт в точку Q1  , делящую отрезок OO1  в отношении 2  к 1  (до гомотетии отрезок P Q  был половиной PR  , а после он перешёл в XQ1  , который равен 1
3PR  ). При этом прямая XQ1  будет пересекать отрезок TZ  в точке W  , поскольку в параллелограмме ACC1A1  прямая A1C  пересекает вершину C  , а в параллелограмм XYZT  отличается от ACC1A1  лишь тем, что длины сторон YZ  и XT  короче, а значит, точка пересечения прямой XQ1  с прямой TZ  будет лежать ниже точки Z  .

PIC

Аналогично, прямая, проходящая через Z  параллельно прямой A1C  будет делить OO1  в отношении 2  к 1  , но уже считая от точки O  , и она будет проходить через отрезок XY  . Значит, прямая MP  будет лежать между этими двумя прямыми и также проходить через отрезок TZ  . Значит, отрезок нужной прямой — это отрезок прямой MP  , содержащийся в параллелограмме XY ZT  .

Поскольку MP ∥ XW  , длина этого отрезка будет равна XW  . Отрезок XQ1  — образ AQ  при гомотетии, значит, он равен 23AQ = 23  .

Также XQ1 = Q1W  , то есть искомая длина — 43  .

Ответ:

 4
3

Ошибка.
Попробуйте повторить позже

Задача 2#83310

На графике приведенного квадратного трехчлена с целыми коэффициентами отмечены две точки с целочисленными координатами. Найти расстояние между этими точками, если известно, что оно выражается целым числом, а дискриминант квадратного трёхчлена равен 9.

Подсказки к задаче

Подсказка 1

Формула подсчёта расстояния между двумя данными точками использует квадрат этого расстояния. Тогда что мы можем сказать про квадрат числа, если корень из него — целочисленное значение?

Подсказка 2

Выражение квадрата расстояния содержит сразу и абсциссы, и ординаты наших точек, это очень много переменных, вот бы оставить что-то одно из этого. Откуда же тогда можно получить y₁ - y₂ и x₁ - x₂ в одном выражении (где x₁, x₂, y₁, y₂ — абсциссы и ординаты данных точек соответственно)?

Подсказка 3

Тогда квадрат расстояния — это (x₁ - x₂)2(1 + k²), где k — некоторое выражение, записанное сейчас одной переменной для удобства. Имеется выражение «квадрат = 1 + квадрат», но много ли квадратов целых чисел отличаются на 1? Какой вывод можно сделать об абсциссах данных точек и о вершине параболы?

Подсказка 4

Осталось ещё одно условие в задаче, про дискриминант. Если изначальный квадратный трёхчлен равен y = x² + bx + с. В дискриминанте задействованы b и c, а в предыдущем найденном факте мы упоминали вершину, что их связывает? Конечно же b! А после можно будет сделать вывод на чётность x₁ - x₂.

Показать ответ и решение

Пусть (x ,y ),(x ,y )
  1 1   2 2  — эти точки, а y =x2 +bx+ c  — трёхчлен. Тогда справедливы равенства y = x2+ bx + c
 1   1   1  и y = x2 +bx + c
 2  2    2  . Если вычесть из первого второе, то получим y1− y2 =(x1− x2)(x1 +x2+ b)  , то есть y1− y2  делится на x1− x2  (для удобства запишем y1− y2 = k(x1− x2)  ).

Квадрат расстояния равен

       2        2         2    2
(y1− y2) + (x1− x2) =(x1− x2) (1 +k )

Поскольку множитель (x  − x )2
 1   2  — квадрат, то и 1+ k2  должен быть квадратом. Заметим, что квадраты целых чисел могут отличаться на 1  только если эти числа — 1  и 0  . Значит, k =0 =x + x + b
       1   2  , откуда y − y =0
 1  2  . То есть абсциссы выбранных точек симметричны относительно абсциссы вершины параболы.

Поскольку  2
b − 4c  равен 9, то b  нечётное. Таким образом, абсцисса вершины параболы является полуцелым числом (рациональная дробь со знаменателем 2  ), а значит, абсциссы x1  и x2  разной чётности, то есть расстояние — любое положительное нечётное число.

Ответ: Это может быть любое положительное нечётное число.

Ошибка.
Попробуйте повторить позже

Задача 3#83309

Область G  на плоскости, ограниченная двумя параболами y =− 2x2 +3x  и y = x2+ px +q,  имеет площадь 32. Вертикальная прямая x =1  разбивает её на две равновеликие части. Найти p  и q  .

Подсказки к задаче

Подсказка 1

Площади, графики, да тут всё намекает на определённый интеграл, а чтобы его найти надо посмотреть на модуль разности графиков, именно модуль, потому что площадь должна быть не отрицательной!

Подсказка 2

Нам сказано, что прямая x = 1 разбивает график на 2 равновеликие части, а парабола сама по себе фигура довольно симметричная, не можем ли мы что-то сказать про точку x = 1 для параболы?

Подсказка 3

Верно, это абсцисса вершины параболы, а мы умеем находить её через коэффициенты параболы, остаётся только посчитать определённый интеграл и получить условие на q, и задача будет уничтожена!

Показать ответ и решение

Обозначим данные параболы y(x)= −2x2+3x
1  и y (x)= x2+ px+ q,
 2  пусть они пересекаются в точках с абсциссами x1 < x2.

Ограниченная ими площадь (над одним графиком и под другим) равна модулю разности площадей под графиками на отрезке [x1,x2].  А это по формуле Ньютона-Лейбница считается как

||∫ x2       ∫ x2     ||  ||∫ x2( 2          )  ||
|| x1 y1(x)dx− x1 y2(x)dx||= ||x1 3x + (p − 3)x+ qdx||

Заметим, что полученный интеграл равен площади под графиком параболы 3x2+(p− 3)x+ q  на отрезке [x1,x2]  . По условию прямая x =1  делит эту площадь на две равновеликие. Значит, x= 1  — абсцисса вершины этой параболы. С одной стороны, она равна 3−6p,  а с другой стороны, x1+2x2= 1.  Тогда находим

3−-p =1  =⇒   p= −3
  6

Теперь запишем данное в условии значение площади и получим уравнение на оставшийся параметр:

    |               |
32= ||∫ x2(3x2− 6x+ q)dx||=||(x3− x3− 3(x2 − x2)+q(x − x))||=
    |x1             |    2  1    2   1     2  1

  |                              | |                                 |
= |(x2− x1)(x21 +x22+ x1x2 − 3x1− 3x2 +q)|=|(x2 − x1)((x1+x2)2− x1x2− 3(x1+ x2)+q)|=

  ||           2q||  |||∘---4q    2q|||   (∘ ---q)3
= ||(x2− x1)(−2+ 3-)||= || 4− -3 (2− 3-)||= 4  1− 3

   (∘---q)3
8=   1 −3

      q
4= 1− 3

q = −9
Ответ:

 p =−3,q = −9

Ошибка.
Попробуйте повторить позже

Задача 4#83308

Натуральное число n ≥2023  имеет простой делитель p >2  и другой делитель q,  связанный с p  соотношением (p− 1)(q+ 2)=n − 2  . Найти наименьшее возможное при этих условиях число n  .

Подсказки к задаче

Подсказка 1

Давайте раскроем скобки, приведём подобные и посмотрим на выражения слева и справа. Что можно сказать про p и q, исходя из того, что они делители числа n? Ведь слева у нас выражение без свободного коэффициента, зависящее от p и q, а справа n.

Подсказка 2

Верно, можно сказать, что 2p кратно q и q кратно p. Как можно сделать оценки на p и q?

Подсказка 3

Можно сказать, что q = kp. Но тогда 2p кратно kp. Равенства быть не может по условию, остаётся только вариант 2p^2 = n. Отсюда понятно, как искать min n: нужно найти min p при 2p^2 ≥ 2023.

Показать ответ и решение

Раскроем скобки:

(p− 1)(q +2)= n− 2 =⇒  pq− q+ 2p − 2 =n − 2

pq− q+2p= n

Раз p  и q  — это делители n,  то выражение в левой части должно делиться на p  и q.  Следовательно, получаем

(|{  ..
  q. p
|( 2p ... q

То есть q = kp,  тогда 2p ... kp,  откуда следует, что k =1  или k= 2.  Но так как q ⁄= p,  подходит только q = 2p.  Подставим:

  2
2p − 2p+ 2p= n

2p2 =n

Осталось перебрать чётные n,  которые является удвоенным квадратом простого числа. Перебирая n ≥2023,  получаем ответ 2⋅372 = 2738.

Проверка:

(37− 1)(2 ⋅37+ 2)= 2⋅372− 2

(37− 1)(37+ 1)= 372− 1
Ответ: 2738

Ошибка.
Попробуйте повторить позже

Задача 5#83306

Решить уравнение

              x      x
4cosπx =[lg(100 ⋅3 )]− [lg[3]]

Здесь [a]  – целая часть числа a  – наибольшее целое число, не превосходящее a  .

Источники: Росатом - 2024, вариант регионов, 11.2 (по мотивам ММО - 2020, 11.2 второго дня)

Подсказки к задаче

Подсказка 1

Сразу, как мы видим логарифмы, надо записывать ОДЗ. ОДЗ здесь будет x >= 0. Дальше, давайте сделаем тождественные преобразования. У нас выходит, что 4cos(pi * x) - 2 = [lg(3^x)] - [lg[3^x]]. Попробуйте посмотреть чему вообще может равняться правая часть. Как нам оценить 3^x (по сути из этой оценки и вытекает значение правой части)?

Подсказка 2

Для любого x можно найти такое k, что 10^(k + 1) > 3^x >= 10^k, k - целое. При этом эта оценка работает и на [3^x] с тем же k. Значит, правая часть всегда 0. Что теперь остаётся сделать?

Подсказка 3

Верно, решить уравнение 4cos(pi * x) = 2 с учетом ОДЗ. После понятных преобразований, нужно получить две серии решений, каждая из которых зависит от периода, и понять для каких периодов x >= 0.

Показать ответ и решение

Запишем ОДЗ

 x           x
[3 ]≥1  =⇒   3 ≥ 1  =⇒  x ≥0

Сделаем преобразования:

              x      x
4cosπx = [lg(100 ⋅3 )]− [lg[3 ]]

4cosπx= 2+ [lg(3x)]− [lg[3x]]

Докажем, что [lg(3x)]− [lg[3x]]= 0.  Пусть [lg(3x)]= k,  тогда 10k+1 > 3x ≥ 10k.  Если взять целую часть, то получим 10k+1 > [3x]≥10k.  То есть "перескочить"через целое невозможно, то есть в действительности [lg(3x)]− [lg[3x]]= 0.

Тогда получаем

4cosπx= 2 =⇒   cosπx= 1
                      2

⌊                     ⌊
  πx = π+ 2πk         | x= 1 +2k
||⌈      3         ⇐⇒   ||    3
  πx =− π+ 2πn        ⌈ x= − 1+ 2n
        3                    3

С учетом ОДЗ получаем

⌊ x= 1 +2k, k ∈ℤ, k ≥0,
||    3
|⌈      1
  x= − 3 + 2n, n∈ ℤ, n≥ 1
Ответ:

 1 +2k, k ∈ℤ, k≥ 0,
3  − 1+ 2n, n∈ ℤ, n≥ 1
  3

Ошибка.
Попробуйте повторить позже

Задача 6#83305

У Пети в семье, помимо папы, мамы и бабушки, есть ещё братья и сёстры. Средний возраст папы, мамы и бабушки на 15 лет больше среднего возраста детей и на 10 лет больше среднего возраста всех членов семьи. Сколько в семье детей?

Подсказки к задаче

Подсказка 1

Давайте составим уравнение. Так как речь идёт о среднем возрасте, можно обозначить сумму возрастов взрослых за x, детей - за y, а количество детей через n. Теперь можем составить систему уравнений.

Подсказка 2

Пользоваться дробями нам не очень удобно, а так как ни одна из переменных не равна нулю, можем домножить уравнения на знаменатели дробей. Заметим, что одна из сторон обоих уравнений одинакова. Остаётся только приравнять другие стороны и выразить отсюда n

Показать ответ и решение

Обозначим сумму возрастов папы, мамы и бабушки через x  , сумму возрастов детей через y  , а количество детей через n  . Тогда справедливы следующие равенства:

x       y x  x+ y
3 = 15 + n,3 = n-+3 +10

Преобразуем равенства:

nx= 3y+45n,nx= 3y+ 30(n+ 3)

Видно, что

45n = 30(n+ 3)

n= 6
Ответ: 6

Ошибка.
Попробуйте повторить позже

Задача 7#83301

Дана плоскость P  . В ней отложены отрезки OA =3,OB = 4,OC = 7  . Из O  восставлен перпендикуляр к плоскости P  . На этом перпендикуляре отметили точку D  такую, что сумма углов, образованных при пересечении AD, BD  и CD  и этого перпендикуляра, равна   ∘
180 . Найти OD  .

Подсказки к задаче

Подсказка 1

Треугольники ODA, ODB и ODC прямоугольные, также они имеют общую сторону OD. Если её обозначить за переменную, как можно будет записать условие на сумму трёх углов?

Подсказка 2

Пусть OD = x, тогда углы выражаются через арктангенсы. Тогда из условия получаем, что сумма трёх арктангенсов равна π. Что же хочется сделать? Взять от обеих частей тангенс! Но для тангенса суммы двух углов мы формулу знаем, чего не скажешь о суммы трёх. А вот π одиноко стоит с правой стороны, тогда можно сначала перенести одно слагаемое на правую часть и потом уже делать махинации со взятием тангенса.

Подсказка 3

Тогда взяв тангенс от обеих частей (но помните, что нужно будет сделать проверку равносильности такого перехода!) и применив формулу тангенса суммы, получаем совсем простое квадратное уравнение для x.

Показать ответ и решение

PIC

Обозначим OD  через x  . Из прямоугольных треугольников выражаем углы

           7             4            3
∠CDO  =arctgx ,∠BDO  =arctg x,∠ADO  = arctg x

По условию нам дано

    7      4       3
arctgx +arctgx + arctg x = π

Преобразуем

arctg 7 +arctg 4 = π− arctg 3
    x      x          x

Возьмём тангенс от обеих частей (проверку равносильности такого перехода отложим) и применим формулу тангенса суммы

-tg(arctg 7x)+-tg(arctg 4x)          3
1− tg(arctg 7x)⋅tg(arctg 4x) = tg(π − arctgx)

 11
--x--= − 3
1− 28x2   x

   28    11
1− x2 =− 3-

x2 = 28⋅3= 6
     14

x= OD >0,  поэтому подходит только     -
x= √6  .

Теперь вернёмся к уравнению до взятия тангенсов и подставим туда этот корень. Правая часть π− arctg 1√2 = 3π4  лежит на отрезке (0,π)  . Левая тоже, потому что оба арктангенса по определению положительные и меньше π2  . То есть они не могут отличаться на кратное π.  Так что раз тангенсы получились равны, то и сами углы равны.

Ответ:

 √6

Ошибка.
Попробуйте повторить позже

Задача 8#83300

Дан многочлен (1+x15+ x17)6  . Найти коэффициент при x49.

Подсказки к задаче

Подсказка 1

Обратим внимание на степени переменных. Понятно, что при раскрытии скобок для каждого одночлена степень будет вида 17n+15m. Тогда найдём натуральные решения для 17n+15m=49

Подсказка 2

Правильно, единственное решение - (2;1). То есть при перемножении скобок мы 2 раза взяли х¹⁷ и 1 раз х¹⁵. Обратим внимание также, что в заданной скобке перед каждым одночленом коэффициент 1. Как тогда мы можем выразить коэффициент перед х⁴⁹?

Подсказка 3

Конечно, коэффициент перед х⁴⁹ равен количеству способов выбрать комбинацию из двух х¹⁷ и одного х¹⁵ в 6 скобках. Остаётся только это досчитать

Показать ответ и решение

Понимаем, что при раскрытие скобок степень каждого одночлена будет иметь вид 17n +15m,  где n  — количество взятых x17,m  — количество взятых  15
x .  Поэтому решим сначала уравнение в натуральных числах

17n +15m = 49

Нетрудно заметить решение n= 2,m =1,  а также что это решение единственное, т.к. иначе, чтобы сохранить нужные остатки, x  будет изменяться на кратное 15 число, а y  на кратное 17, поэтому одно из них станет отрицательным.

Осталось лишь посчитать количество способов выбрать комбинацию из двух x17  и одного x15  в 6 скобках:

  2  1  6⋅5
C6 ⋅C 4 = 2 ⋅4= 60
Ответ: 60

Ошибка.
Попробуйте повторить позже

Задача 9#83299

Дана гипербола y = 3+5∕x  . Рассматриваются 300 прямоугольников: одна вершина в начале координат, другая на гиперболе при всех x= n  , n  от 1 до 300 включительно. Найти площадь некоторой области, которая содержится только в одном из прямоугольников.

Подсказки к задаче

Подсказка 1

По своей сути задача геометрическая, а самая важная часть геометрической задачи – рисунок. Постройте график функции f(x) = 3 + 5/x и обозначенные прямоугольники. А теперь посмотрите, что за площади нас просят найти.

Подсказка 2

Каждый прямоугольник будет иметь вверху прямоугольную часть, которая принадлежит только ему. Как можно вычислить её площадь?

Подсказка 3

Как произведение сторон прямоугольника! У него одна сторона равна единице, а вторая разности значений функции в соседних натуральных аргументах. Только вот рассмотрите отдельно последний прямоугольник: у него одна из сторон лежит просто на оси абсцисс.

Подсказка 4

Остаётся только записать и вычислить сумму всех площадей. Поверьте, она удобно сворачивается!

Показать ответ и решение

Обозначим 3+ 5
   x  через f(x)  .

У каждого прямоугольника от первого до трёхсотого есть область, содержащаяся только в нём. Эта область является прямоугольником с шириной 1 и высотой f(n)− f(n +1)  (если считать f(301)= 0  , ведь у последнего прямоугольника нижнее основание лежит уже на оси абсцисс)

Поэтому сумма площадей таких областей равна

f(1)− f(2)+f(2)− f(3)+...+ f(299)− f(300)+f(300)− 0= f(1)= 8
Ответ: 8

Ошибка.
Попробуйте повторить позже

Задача 10#83298

Найти сумму максимальных нечётных делителей всех чисел от 61 до 120 включительно.

Подсказки к задаче

Подсказка 1

Интересно, что чисел от 61 до 120 ровно столько же, сколько нечётных от 1 до 120.

Подсказка 2

Чем нечётные отличаются от чётных? Наличием степени двойки. Тогда как удобно представить все числа?

Подсказка 3

Из первого замечания про количество нечётных хочется посмотреть, а сколько чисел вида n * 2ᴷ для каждого нечётного n (меньшего 120) лежит в промежутке от 61 до 120.

Подсказка 4

Оказывается, для каждого такого n одно своё n * 2ᴷ в промежутке от 61 до 120. Попробуйте понять, почему это так, и досчитать искомую сумму нечётных n!

Показать ответ и решение

Для каждого нечетного числа n  в промежутке 1 до 119 рассмотрим числа вида n⋅2k  , где k∈ ℕ∪ {0}.  Докажем, что для каждого  n  найдётся ровно одно число вида    k
n⋅2  на промежутке от 61 до 120.

Пусть на нашем промежутке не нашлось нужного числа. Тогда должна найтись такая пара чисел     k   k+1
(n⋅2 ;n ⋅2  )  , что

   k        k+1
n⋅2 ≤ 60, n⋅2   ≥121,

что невозможно, поскольку из первого следует, что

   k+1
n ⋅2  ≤ 120

Тогда из нашего утверждения следует, что для любого нечётного числа n  , меньшего 120, найдётся число от 61 до 120, что его наибольшим нечетным делителем будет n  . Причём для каждого n  такое число уникально. При этом нечётных чисел от 1 до 120 ровно 60, как и чисел от 61 до 120. Получается, что искомая сумма равна сумме всех нечётных чисел от 1 до 120.

              1+-119-
1+3+ ...+ 119=   2   ⋅60= 3600
Ответ: 3600

Ошибка.
Попробуйте повторить позже

Задача 11#83297

Известно, что

----sin2x----- -----cosy-----  ------1------
1+ cosy− sin2x =1 − cosy+ sin2x = sin2x+ cosy− 1

Найти максимум cos22x+ sin2y  .

Подсказки к задаче

Подсказка 1

Когда видишь выражение с тригонометрией и дробями, то становится страшно. Но от одного из этого точно можно избавиться и записать систему из трёх уравнений.

Подсказка 2

Уравнения всё ещё не выглядят красиво, но может, тогда их получится разложить на множители?

Подсказка 3

В знаменателях первой и второй дроби есть одинаковое выражение в виде разности некоторого синуса и некоторого косинуса. После домножения на знаменатель это разность может стать одним из множителей. А ещё совсем нетрудно раскладывается на множители выражение получаемое из равенства первой и третей дробей (вспомните про разность квадратов).

Подсказка 4

Тогда получается 4 случая. 3 из них нетрудные. Но случай, когда в обоих выражениях sin2x + cosy + 1 = 0, не так прост. Искомое выражение удобно было бы свести к виду "число = квадрат какого-то выражения", так как это даёт нам хорошую оценку из-за неотрицательности квадрата.

Показать ответ и решение

Преобразуем равенство первого и второго выражений (домножим на знаменатели, приведём подобные и разложим на множители):

(sin2x− cosy)(sin2x +cosy+1)= 0

Аналогично сделаем с равенством первого и третьего выражений:

(sin2x− 1)(sin2x+ cos+1)= 0

Рассмотрим 4  случая:

1)sin 2x =cosy  и sin2x= 1  . В этом случае cos22x +sin2y =0  .

2)sin 2x =cosy  и sin2x+ cosy +1= 0  , тогда sin2x= cosy = − 1
             2  и cos22x +sin2y = 3
             2  .

3)sin 2x +cosy+1 =0  и sin2x= 1  . Тогда cosy =− 2  , что невозможно.

4)sin 2x +cosy+1 =0  . Запишем cos22x+ sin2y  как 2− sin22x− cos2y  . Теперь вместо sin2x  подставим − 1− cosy  и преобразуем: 1− 2cosy− 2cos2y = 3− 1(1+2 cosy)2
                 2  2  . Видно, что максимум равен 3
2  и он достигается при cosy =− 1
       2  . Осталось заметить, что cosy = sin2x= − 1
             2  не зануляют знаменатели в изначальных равенствах.

Ответ:

 3
2

Ошибка.
Попробуйте повторить позже

Задача 12#83296

Даны два квадрата со сторонами 200 и 300 метров с общей вершиной. 2 стороны меньшего квадрата лежат в большом. Петя и Вася бегут в одном направлении по разным квадратам 100 минут со скоростью 100 метров в минуту. Найти время, пока они бегут вместе.

Подсказки к задаче

Подсказка 1

Назовём общую вершину А, а вершины малого квадрата, лежащие на сторонах большого - B и C. Пусть движение происходит от В к С. Тогда моменты встречи в В определяют начало промежутка в 4 минуты, когда ребята бегут вместе. Как бы найти эти моменты времени для каждого мальчика...

Подсказка 2

Верно, нужно рассчитать, сколько времени потребуется каждому, чтобы добраться до точки В, а затем найти, за сколько минут они пробегут целый круг и вернутся в В. Если мы умножим время, за которое каждый из мальчиков пробегает квадрат на какое-то целое число, и добавим соответствующее время добегания до точки В, то сможем найти все моменты времени, в которые ребята оказывались в этой точке.

Подсказка 3

Получаем 1+3t=2k. Обратите внимание на чётность)

Подсказка 4

Верно, t может быть только нечётным. Иначе говоря, t=2m-1 при нечётном m. Надо только подставить m в начальное уравнение времени касательно t и найти, при скольких m оно меньше 1000. Это и будет количество 4-минутных встреч. И не забудьте прибавить 2 минуты, что ребята вместе пробежали в самом начале!

Показать ответ и решение

Пусть движение происходит в направлении против часовой стрелки. Введём обозначения как показано на рисунке:

PIC

Петя бежит по большой дорожке из точки A  , Коля — по малой. Моменты времени, в которые Петя и Коля попадают в точку B  за 100  минут бега, описываются сериями: 10 +12t,6+ 8k  . Моменты встречи друзей в точке B  определяют начало промежутка времени в     4  минуты, в течении которого они бегут вместе. Также необходимо учесть, что в самом начале они вместе пробегают отрезок AC  за 2  минуты.

Найдём, когда серии пересекаются: 10+ 12t=6 +8k,1+3t= 2k  . Видим, что если t  чётно, то не найдётся такого k  , чтобы равенство выполнилось, а если нечётно — найдётся. Значит, t= 2m − 1  и серия, описывающая встречи в точке B,  имеет вид: 24m − 2  . Встречи происходят при m= 1,2,3,4  . Значит, они пробегают вместе 18  минут.

Ответ: 18

Ошибка.
Попробуйте повторить позже

Задача 13#79620

Многочлен P(x)  с целыми коэффициентами удовлетворяет условию P(17)= P(23)=2023  . Найти наименьшее возможное при этих условиях значение P(0)> 0  .

Источники: Росатом-2023, 11.1 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Давайте рассмотрим многочлен Q(x) такой, что Q(x) = P(x) – 2023. Следовательно, положительное число P(0) равно Q(0) + 2023. В виде произведения каких чисел можно представить Q(0)?

Подсказка 2

Q(17)=Q(23)=0, значит, числа 17 и 23 являются корнями многочлена Q(x), тогда по теореме Безу его можно разложить как (x-17)(x-23)R(x), где R(x) – многочлен с целыми коэффициентами. Мы знаем, что P(0) > 0, тогда что можно сказать про R(0)?

Подсказка 3

Подставим: P(0) = 17*23*R(0) + 2023. Значит, R(0) будет больше -2023/(17*23). Но R(x) – многочлен с целыми коэффициентами, значит, R(0) – это целое число. Какое минимальное значение может принимать R(0) и какое минимальное значение в таком случае будет иметь P(0)?

Показать ответ и решение

Пусть Q(x)= P(x)− 2023,  тогда Q(17)=Q (23)= 0,  следовательно, по теореме Безу,  Q(x)  делится на (x− 17)  и на (x− 23).  Таким образом, имеет место представление

Q(x)= (x− 17)(x− 23)R(x),

R(x)  — некоторый многочлен с целыми коэффициентами. Тогда

P(x)= (x− 17)(x− 23)R(x)+ 2023

P(0)=17⋅23R(0)+ 2023 =391m +2023, m ∈ℤ

Поскольку [2039231 ]= 5,  получаем P (0)min = 2023− 5⋅391 =68.  Например, это минимум реализуется при

P(x)=2023− 5(x− 17)(x− 23)

Замечание. На самом деле в качестве Q(x)  можно взять любой многочлен с целыми коэффициентами, такой что Q (0)= −5.

Ответ: 68

Ошибка.
Попробуйте повторить позже

Задача 14#76941

Длина стороны AD  четырехугольника ABCD  вписанного в окружность равна 5 . Точка M  делит эту сторону в отношении AM  :MD = 1:4  , а прямые MC  и MB  параллельны сторонам AB  и CD  соответственно. Найти длину стороны BC  четырехугольника.

Подсказки к задаче

Подсказка 1

Сразу обозначим все углы, вытекающие из параллельности. Как использовать отношение, данное в условии? Какую связь можно заметить между треугольниками на картинке?

Показать ответ и решение

PIC

Прямые MB  и CD  параллельны, поэтому углы BMA  и CDA  равны (обозначены на рисунке цифрой 2 ), аналогично равны углы BAM и CMD  (обозначены на рисунке цифрой 3). Отсюда следует подобие треугольников BAM  и CMD  с коэффициентом подобия 4 и равенство углов ABM  и MCD  (обозначены на рисунке цифрой 1). Заметим, что ˆ1 +ˆ2+ ˆ3= π  .

Покажем, что треугольник MBC  подобен треугольникам BAM  и CMD  , вершины треугольников перечислены в порядке соответствия. Углы DCM  и BMC  , полученные при пересечении прямой CM  параллельными прямыми MB  и CD  , равны как внутренние накрест лежащие. Сумма углов BCD  = BCM + ˆ1  и BAD = ^3  равна π  , как сумма противоположных углов вписанного в окружность четырёхугольника. Значит, угол BCM = ˆ2  и треугольник MBC  подобен треугольникам BAM  и CMD  .

Положим p:= BA  и q :=BM  , тогда CM  =4p  и CD = 4q  . Треугольники BAM  и MBC  подобны с коэффициентом подобия   pq  , и стороны BA  и BM  треугольника BAM  соответствуют сторонам MB  и MC  треугольника MBC  , поэтому pq =4qp  . Значит, q =2p  и, треугольники BAM  и MBC  подобны с коэффициентом подобия 2. Следовательно, сторона BC  в два раза длиннее стороны AM  , т.е. длина стороны BC  равна 2.

Ответ: 2

Ошибка.
Попробуйте повторить позже

Задача 15#75111

Решите уравнение

logsinxsin2x+ logsin2x sin3x+ logsin3x sinx=

=logsin2xsinx +logsin3xsin 2x +logsinxsin3x

Источники: Росатом-2023, 11.2, региональный (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Что первым делом нужно написать в уравнении с логарифмами?

Подсказка 2

Конечно, ОДЗ! Само уравнение выглядит довольно страшно, но не видите ли вы в нём много похожего?

Подсказка 3

Подумайте, как можно выразить все логарифмы из правой части через логарифмы в левой части. Тогда можно будет ввести замену: заменяем первый логарифм, второй... а третий ведь можно выразить через первые два!

Подсказка 4

Получили красивое уравнение, но, правда, с двумя переменными... Не спешите пугаться! Его можно разложить на скобочки :) Останется только решить получившуюся совокупность, не забыв учесть ОДЗ и ограничение на знаменатель

Показать ответ и решение

Областью определения функций, входящих в исходное уравнение, являются значения x  , при которых sinx ∈(0;1),sin2x∈ (0;1),sin3x∈ (0;1).

Положим u =logsinx sin2x  и v = logsin2x sin3x  . Тогда, по формулам перехода от одного основания логарифма к другому имеем

            logsinxsinx        1      1
logsin2xsinx = logsinxsin2x = logsinx-sin2x = u,

logsin3xsinx = logsin2xsinx-= -1.
            logsin2x sin3x  uv

Далее, аналогично, log    sin2x= 1
  sin3x       v  и log  sin3x= uv
  sinx  . После этого исходное уравнение запишется так:

      1-  1   1
u+ v+ uv = u + v + uv.

Перенося все члены из левой части уравнения в правую и выполняя стандартные преобразования, получаем

v+-u+-u2v2-− u2v−-uv2− 1 (u-+v)−-uv(u+-v)+(u2v2−-1)-
          uv          =            uv            =
= (u+-v)(1−-uv)+-(uv− 1)(uv-+1)= (uv−-1)(uv−-u− v-+1)=
              uv                     uv
   = (uv−-1)(u(v− 1)−-(v-− 1))= (uv− 1)(1-− u)(v-− 1)= 0.
              uv                  uv

Поэтому решениями преобразованного уравнения являются все значения u  и v  , удовлетворяющие хотя бы одному из равенств u= 1  , или v =1  , или uv = 1  при условии (это относится только к первым двум равенствам) uv ⁄= 0  .

Возвращаясь к исходному уравнению отсюда следует, что с учётом области определения, его решениями являются решения совокупности

u= logsinxsin2x =1,v = logsin2xsin3x= 1,uv =logsinx sin3x= 1.

Эта совокупность на области определения эквивалентна совокупности уравнений

sinx =sin2x,sin2x =sin 3x,sinx =sin 3x.

Рассмотрим первое уравнение совокупности:

   sinx= sin2x⇔ sin x− sin2x= 0⇔
sinx− 2sinxcosx= 0⇔ sinx(1− 2cosx)= 0.

Это уравнение на области определения решений не имеет.

Рассмотрим второе уравнение совокупности:

  sin2x= sin3x⇔ sin 3x − sin 2x =0 ⇔
   3x − 2x  3x+ 2x    x    5x
sin --2--cos--2---= sin2 cos 2-= 0.

Решения уравнения sin x2 = 0  в область определения не входят. Решениями уравнения cos5x2-= 0  являются 52x= π2 + πk,k  — целое, т.е. x = π5 + 2π5-k  . При k  кратном 5  такие x  принадлежат области определения, при остальных значениях k  - нет.

Рассмотрим третье уравнение совокупности:

 sinx= sin3x⇔ sin 3x − sin x= 0⇔
sin 3x−-xcos 3x-+x-= sinxcos2x =0.
     2       2

Решения уравнения sinx =0  в область определения не входят. Если cos2x= 0  , то sin 2x =±1  , поэтому решения уравнения cos2x= 0  в область определения также не входят.

Ответ:

 π + 2πn,n∈ Z
 5

Ошибка.
Попробуйте повторить позже

Задача 16#69996

Решите уравнение:

||   ∘ ----2||   √-   ∘ ----2-
|2x −  1− 4x |= 4 2⋅x⋅  1− 4x

Источники: Росатом-2023, 10.4 (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Начнем с базовых вещей. Напишите ОДЗ и подумайте, как на этих ограничениях грамотно избавиться от модуля

Подсказка 2

Конечно, необходимо возвести обе части в квадрат и сделать преобразования. Заметим, что выражение 1-4x² встречается в обеих частях уравнения. Хочется сделать замену, однако если заменить t = sqrt(1-4x²), получим уравнение с двумя неизвестными, зависящими друг от друга, что плохо. Какая замена будет более удобной?

Подсказка 3

Замена: t = 4x * sqrt(1-4x²). Осталось дорешать квадратное уравнение на t, затем биквадратное на x и не забыть проверить все ограничения!

Показать ответ и решение

Уравнение эквивалентно системе

(|  x≥ 0
|{      2
||(  1(− 4x√≥-0--)2  ( √- √-----)2   ⇐ ⇒
   2x −  1− 4x2 =  4 2x 1− 4x2

(
|{  x≥ 0[ 1 1]
|(  x∈2 − 2;√2----2      2     2(    2)
   4x − 4x 1− 4x + 1− 4x = 32x 1 − 4x

В итоге получаем

{  x∈[0;1]
   −4x√12−-4x2-+1= 32x2(1 − 4x2)

Введем переменную t= 4x√1-− 4x2, t≥ 0  . Тогда уравнение принимает вид

        2
−t+ 1= 2t

  2
2t +t− 1= 0

Решая квадратное уравнение, находим t= −1, t= 1
         2  . С учетом неотрицательности t  , выбираем t= 1
   2  . В итоге получаем уравнение для нахождения x

4x∘1-− 4x2 = 1, x ∈[0;1]
           2       2

Решим это уравнение

   (     )
64x2 1− 4x2 = 1  ⇐⇒   256x4− 64x2+1 =0  =⇒

         32± √322−-256   32 ±16√3   2±√3-
=⇒   x2 =-----256----- = --256---= -16--> 0.

Тогда, с учетом неотрицательности x  , находим     √--√-
x = -2±4-3  . Осталось проверить условие x≤ 12 :

∘---√-
-2±--3-≤ 1
  4      2

  √ -
2±  3≤ 4

± √3≤ 2

Неравенство верно, значит, оба корня подходят.

Ответ:

 √2-±√3
   4

Ошибка.
Попробуйте повторить позже

Задача 17#68079

На ребре AC  основания треугольной пирамиды ABCD  расположена точка M  так, что AM :MC = 1:2  . Через середину ребра BC  основания пирамиды проведена плоскость P  , проходящая через точку M  и параллельная боковому ребру CD  . В каком отношении плоскость P  делит объем пирамиды?

Источники: Росатом-2023, 11.6, Москва (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Давайте для начала построим сечение плоскостью P нашей пирамиды.

Подсказка 2

Пользуясь параллельностью, мы сможем из подобия найти, в каком отношении плоскость P делит рёбра пирамиды, а значит мы сможем найти и...

Подсказка 3

Как относятся высоты маленьких пирамидок и высотам из точек A и D пирамиды ABCD.

Подсказка 4

Нам достаточно найти, какую часть объёма всей пирамиды ABCD составляет объём многогранника, лежащего со стороны вершины A. Чтобы найти его объём, можно...

Подсказка 5

Разбить его на две пирамидки. А объём каждой из них мы сможем выразить через объём всей пирамиды ABCD, потому что знаем отношения высот и отношения площадей оснований.

Показать ответ и решение

Построим сечение. Поскольку секущая плоскость параллельна ребру CD  , она пересечет плоскость ACD  по прямой MP  , параллельной CD  , а плоскость BCD  — по прямой NQ  , также параллельной CD  . Соединим точки P  и Q  , лежащие в одной плоскости, и точки    M  и N  , лежащие в одной плоскости, получим MP QN  — искомое сечение.

PIC

Пусть V  — объем пирамиды, V1  — сумма объемов пирамид PABNM  и PQBN  и V2 = V − V1  .

Из подобия пар треугольников ACD  и AMP  и из условия задачи получим, что

AM = x,MC = 2x,AP = y,P D =2y

Отсюда следует, что

     y-      1
HP = 3y ⋅HD = 3HD,

где HP  — высота, опущенная из вершины P  пирамиды PABNM  , HD  — высота, опушенная из вершины D  пирамиды ABCD  .

А также значит, что площадь основания пирамиды P ABNM  равна:

                            2x  u        2
SABNM  =SABC − SMNC = SABC − 3x ⋅ 2u-⋅SABC = 3SABC

Тем самым:

VPABNM = 1HP ⋅SABNM = 1 ⋅ 1⋅HD ⋅ 2SABC = 2V
         3            3  3     3       9

Аналогично из подобия пар треугольников BCD  и BNQ  и из условия задачи получим, что

CN =NB  =u,BQ = QD = z

Отсюда следует, что

  ′  2y      2
HP = 3y ⋅HA = 3HA,

где H ′P  — высота, опущенная из вершины P  пирамиды PQBN  , HA  — высота, опущенная из вершины A  пирамиды ABCD  .

А также значит, что площадь основания пирамиды P QBN  равна:

SBNQ = u-⋅ z-⋅SBCD = 1SBCD
       2u  2z        4

Тем самым:

        1 ′        1  2    1       1
VPQBN = 3HP ⋅SQBN =3 ⋅3HA ⋅4SDBC = 6V

Теперь можно записать, что

                     2   1    7-
V1 = VPABNM + VPQBN = 9V + 6V = 18V

              7
V1= --V1--= --18V--= -7
V2  V − V1  V − 7V   11
                18
Ответ:

-7
11

Ошибка.
Попробуйте повторить позже

Задача 18#68078

На клетках шахматной доски размером 8 ×8  случайным образом расставлены 4 одинаковых фигуры. Найти вероятность того, что три из них будут находиться либо на одной горизонтали, либо на одной вертикали, либо на одной из двух главных диагоналей.

Источники: Росатом-2023, 11.5, Москва (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Подумаем, а как же нам считать благоприятные исходы для подсчёта вероятности? Мы знаем, что нами должна быть выбрана линия, на которой располагается хотя бы 3 фигурки. Сколько таких вариантов?

Подсказка 2

Попробуйте посчитать количество благоприятных исходов для одной линии. На каждой линии должны быть выбраны либо 4 места для всех фигур, либо 3 места на линии и одна клетка на остальной части доски.

Показать ответ и решение

Общее число равнозначных исходов расстановоки фигур есть выбор произвольных 4  клеток из имеющихся 64  , т.е. оно равно   4  -64!-
C64 = 60!⋅4! = 16⋅21⋅31⋅61  .

Благоприятный исход может в двух случаях: три одинаковые фигуры находятся на одной линии и одна не на этой линии, либо четыре одинаковых фигуры на одной линии. Тогда число благоприятных исходов для одной линии (горизонтали, вертикали или главной диагонали) равно  3  1    4
C8 ⋅C56+ C8 = 3206 =2 ⋅7 ⋅229  . Всего имеется 18 различных линий (горизонталей, вертикалей и главных диагоналей). Итого число благоприятных исходов равно 18⋅2⋅7⋅229  .

Искомая вероятность есть отношение числа благоприятных исходов к общему числу исходов:

       18⋅2⋅7⋅229    687
P (A) =16⋅21⋅31⋅61 = 7564
Ответ:

-687
7564

Ошибка.
Попробуйте повторить позже

Задача 19#68077

Решить уравнение

      ∘ --2----           ∘ --2--------
(log2x +  log2x+ 1)(log2(x− 2)+  log2(x− 2)+1)=1

Источники: Росатом-2023, 11.4, Москва (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Давайте внимательно посмотрим на две наши скобки. Там похожие логарифмы под корнями и без них. На что тогда можно попробовать умножить обе части нашего уравнение? Конечно, учитывая ОДЗ.

Подсказка 2

Верно, давайте по очереди умножим обе части уравнения сначала на сопряжённое число одной скобки, а потом на другое. Получатся два новых уравнения. Что с ними можно сделать, чтобы совсем избавиться от корней?

Подсказка 3

Да, давайте просто вычтем одно из другого и получим уравнение только с основанием 2. Далее применяя свойства логарифмов, дорешать задачу несложно. Не забудьте про ОДЗ.

Показать ответ и решение

Запишем ОДЗ: x> 2  . Заметим, что на ОДЗ выполнено, что       ∘--2----
log2x±  log2x +1⁄= 0  ,           ∘ --2--------
log2(x− 2)±  log2(x − 2)+ 1⁄= 0  .

Умножая правую и левую части исходного уравнения на ∘ -------
  log22x+ 1− log2x  и учитывая, что (      ∘ -------)(∘ -------      )
 log2x +  log22x+ 1    log22x+ 1− log2x  =1  , получим равносильное уравнение

          ∘ ----------- ∘ -------
log2(x− 2)+   log22(x− 2)+1 =  log22x+ 1− log2x
(1)

Далее, умножая правую и левую части исходного уравнения на ∘log2(x-− 2)+-1− log(x− 2)
    2            2  , получим также равносильное уравнение (ниже поменяли местами левую и правую части)

∘ --2--------                 ∘ --2----
  log2(x − 2)+ 1− log2(x− 2)=log2x + log2x+ 1
(2)

Вычитая из уравнения (2) уравнение (1), получаем:

log2x +log2(x− 2)=− (log2x +log2(x− 2))

log2x+ log2(x− 2)= 0
(                (           (
{log2(x(x− 2))= 0   {x2− 2x= 1  { x= 1± √2        √ -
(              ⇔ (         ⇔ (         ⇔ x = 1+  2
     x > 2          x >2         x> 2

Ответ:

 1+ √2

Ошибка.
Попробуйте повторить позже

Задача 20#68076

Найти все целые решения уравнения

√----  √-  (√ -  )2022
 n+ 1−  n =   2− 1

Источники: Росатом-2023, 11.3, Москва (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Давайте сначала обратим внимание на данные нам числа. Что в них можно увидеть особенного? Что если записать числа в левой части без корня?

Подсказка 2

Верно, без корней они дают разницу единицу, так как отличаются на 1. Но ведь мы можем это сделать, нужно только умножить число на сопряжённое и разделить, чтобы ничего не поменялось. Тогда какое выражение с точки зрения функции у нас получилось? Сколько решений имеет это уравнение?

Подсказка 3

Ага, слева у нас получилась убывающая функция, а справа константа. Откуда это уравнение имеет не более одного решения. Давайте попробуем составить систему из двух уравнений. Что тогда у нас получится?

Подсказка 4

Верно, аналогичными преобразованиями с сопряжёнными числами, получим второй уравнение, а дальше большое страшное n. Осталось понять, почему оно целое. А нельзя ли просто раскрыть скобки по биному Ньютона и посмотреть, что получится? Попробуйте это сделать, и задача решена!

Показать ответ и решение

Заметим, что левая часть уравнения имеет смысл при n ≥0  Выполним преобразование в левой части:

√----  √-   (√n-+1-− √n-)(√n-+1+ √n)      1
 n+ 1−  n = ------√n+-1+-√n-------= √n+-1+-√n-

Следовательно, √----   -
 n+ 1− √n  монотонно убывает с ростом n  , а значит, рассматриваемое уравнение имеет не более одного решения. Учитывая, что (     )(     )
 √2 − 1 √2 +1  =1  , имеем равносильное исходному уравнение             (     )
√n-+-1+√n-=  √2+ 1 2022  . Тогда получим

(
{ √n+-1− √n =(√2− 1)2022   √-   √-    2022  √-    2022
( √n+-1+ √n =(√2+ 1)2022 ⇒ 2 n =( 2 +1)  − (2 − 1)  ⇒

     ( (√2-+1)2022− (√2-− 1)2022)2
⇒ n=   ---------2-----------

Покажем, что найденное число является целым (натуральным). Имеем по биному Ньютона

( √-         √-      )2  (20∑22     k  20∑22         k)2
 ( 2+ 1)2022− ( 2− 1)2022 =     Ck202222 −   (−1)kCk202222  =
                           k=0         k=0

  ( √- 10∑10      )2
=  2 2    C220k+212 2k ,
       k=0

отсюда

   ( √-    2022  √ -   2022)2  (√ -10∑10      )2   (10∑10      )2
n=  (-2-+1)---−-(-2− 1)--  =    2   C22k02+21 2k   =2     C22k02+21 2k   ∈ℤ
              2                  k=0             k=0
Ответ:

 1 ((√   )2022  (√-   )2022)2
4    2+ 1    −   2− 1

Рулетка
Вы можете получить скидку в рулетке!