Тема ИТМО (открытка)
Стереометрия на ИТМО
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела итмо (открытка)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#82292

Сфера S  касается основания ABC  тетраэдра ABCD  в точке H  и проходит через вершину D  . Рёбра AD,BD  и CD  эта сфера пересекает в точках A1,B1  и C1  . Центр описанной окружности треугольника A1B1C1  лежит на отрезке DH  . Радиус сферы S  равен R  .

Пусть V  - объём тетраэдра ABCD  , а V1  - объём тетраэдра A1B1C1D  . Какое наибольшее значение может принимать V ⋅V1?

Источники: ИТМО-2024, 11.7 (см. olymp.itmo.ru)

Показать ответ и решение

Пусть H
  1  — центр описанной окружности треугольника A B C
  1 11  , лежащий на DH,O  — центр сферы. Очевидно, O  — середина DH  . Так как точки A1,B1  и C1  лежат на сфере, OH1  перпендикулярно плоскости A1B1C1  . С другой стороны, OH1  и DH  — это одна и та же прямая, а DH  перпендикулярна плоскости ABC  . Значит, плоскости ABC  и A1B1C1  параллельны, а тетраэдры ABCD  и A1B1C1D  подобны.

PIC

Пусть h  — длина DH1  , то есть высота маленького тетраэдра. Высота большого тетраэдра равна 2R  , а коэффициент их подобия − 2Rh  .

OH1A  - прямоугольный треугольник с прямым углом H1,OH1 = |R − h|,OA1 = R  , значит, радиус описанной окружности треугольника A1B1C1  , то есть OH1  , равен

r= ∘R2-− (R-− h)2 = ∘2Rh-− h2

Как известно, среди всех треугольников, вписанных в данную окружность, наибольшую площадь имеет равносторонний. Для окружности радиуса r  эта площадь составляет

3√3r2
  4

Значит, объемы тетраэдров составляют

    h 3√3r2   √3hr2   √3h(2Rh− h2)  √3h2(2R − h)
V1 = 3 ⋅-4- = -4---= -----4------= -----4-----

и

   (   )3          √-           √-
V =  2R-- ⋅V1 = 8R3 ⋅-3h2(2R-− h)= 2-3R3(2R−-h),
     h         h3      4            h

а их произведение равно

3R3h(2R-−-h)2
     2

Чтобы максимизировать эту величину, достаточно максимизировать              2
f(h)= h(2R − h) .

f′(h) =(2R− h)2 − 2h(2R − h)=(2R− h)(2R − 3h)

 ′                      2R
f = 0  ⇐⇒   h= 2R или h= -3-

В первой точке достигается минимум, равный нулю, а во второй — максимум. Подставив    2R
h= -3  в формулу для объёма, получим

         16R6
max(V V1) =  9
Ответ:

 16R6
  9

Ошибка.
Попробуйте повторить позже

Задача 2#68706

Дан куб ABCDA  B C D
      1 1 1 1  с ребром равным x.  S  — сфера, вписанная в каркас этого куба (то есть, касающаяся всех его рёбер). Точка M  — середина ребра B1C1.  Прямая AM  вторично пересекает сферу S  в точке X.  Найдите AX.

Источники: ИТМО-2023, 11.4 (см. olymp.itmo.ru)

Подсказки к задаче

Подсказка 1

У нас есть вписанная сфера, а мы хотим найти какой-то отрезок, конец которого лежит на сфере. Может, попробовать применить теорему о касательной и секущей...

Подсказка 2

Наша сфера касается ребра AA₁ в точке K, где K- середина AA₁. Тогда AK²=AX*AM. Надо как-то найти AM...

Подсказка 3

Мы работаем с кубом, поэтому логично было бы поискать теоремки Пифагора. Например для треугольника AMB₁. А почему он прямоугольный?

Подсказка 4

Потому что C₁B₁ перпендикулярен плоскости ABB₁. Тогда по теореме Пифагора для AMB₁: AM²=AB₁²+MB₁². Мы знаем, что B₁M=x/2. Осталось только найти AB₁² и досчитать AX.

Показать ответ и решение

PIC

Пусть L  — середина ребра BC,  тогда BL = BC2-= x2.  Т.к. ABCDA1B1C1D1  — куб, по теореме Пифагора из прямоугольного △ABL  получаем

                ∘ ------   -
    ∘ --2----2-    2  x2  √5x-
AL=   AB + BL  =  x + 4 =  2

M  — середина B1C1,  а L  — середина BC,  следовательно, ML,  как средняя линия квадрата BCC1B1,  равна BB1,  т.е. равна   x.  Т.к. ABCDA1B1C1D1  — куб, по теореме Пифагора из прямоугольного △AML  получаем

                  ∘ -------
AM  =∘AL2--+ML2-=   5x2+ x2 = 3x-
                     4       2

Пусть K  — середина ребра AA1,  тогда      x
AK = 2.  Т.к. сфера S  вписана в каркас куба ABCDA1B1C1D1,  значит, точками касания являются середины рёбер. Следовательно, используем теорему о касательной и секущей

                    AK2   2x2   x
AK2 =AX ⋅AM  ⇒ AX = AM--= 4⋅3x = 6
Ответ:

 x
 6

Ошибка.
Попробуйте повторить позже

Задача 3#74582

Дана четырёхугольная пирамида OABCD,  в основании которой лежит параллелограмм ABCD.  Плоскость α  пересекает рёбра OA,  OB,  OC  и OD  пирамиды в точках  ′
A ,   ′
B,    ′
C и   ′
D соответственно. Известно, что

OA′  1 OB ′  1 OC′   1
OA-= a,OB--= b,OC--= c

Найдите

 V
V-OA′BC′D′-′
 OA BC D

Источники: ИТМО-2022, 11.6 (см. olymp.itmo.ru)

Подсказки к задаче

Подсказка 1

У нас уже есть три отношения, но очень хочется заполучить еще и четвертое... Давайте попробуем найти t = OD'/OD. Для этого введем систему координат с центром O и базисными векторами OA, OB и OC. Какие координаты имеют наши точки в этой системе?

Подсказка 2

Очевидно, что A (1, 0. 0), B (0, 1, 0) и C (0, 0, 1). Значит A' (1/a, 0, 0), B' (0, 1/b, 0), C' (0, 0, 1/c). Т.к. ABCD- параллелограмм, то вектор CD = BA = OA-OB. Чему тогда равен вектор OD?

Подсказка 3

Верно, OA-OB+OC! Тогда D (1, -1, 1) ⇒ D' (t, -t, t). Можно заметить, что плоскость α задается в нашей системе координат уравнением ax + by + cz = 1. Поэтому верно равенство at - bt + ct = 1 (Просто подставили точку D' в это уравнение). Итого, t = 1/(a - b + c). А что мы вообще хотели...

Подсказка 4

Нам нужно найти отношение объемов. Мы умеем легко это делать для тетраэдров, поэтому предлагаю разбить нашу пирамиду OA'B'C'D' на два тетраэдра OA'B'C' и OA'C'D'. Тогда V(OA'B'C'D')/V(OABCD) = V(OA'B'C')/V(OABCD) + V(OA'C'D')/V(OABCD). Т.к. ABCD- параллелограмм, то V(OABCD) = 2V(OABC) = 2V(OACD). А чему равно отношения V(OA'B'C')/V(OABC) и V(OA'C'D')/V(OACD)?

Подсказка 5

Т.к. тетраэдры с общим трехгранным углом относятся так же, как произведение отношений соответствующих сторон, то V(OA'B'C')/V(OABC) = 1/abc. Найдите оставшееся отношение и завершите решение!

Показать ответ и решение

Отношение объём пирамид с общим трёхгранным углом равно произведению отношений длин рёбер, исходящих из этого угла,

VOA′B′C′   1
VOABC--= abc

VOA′C′D′= -t,
VOACD    ac

где t= ODOD′ .  Поскольку треугольники ABC  и ACD  равны, VOABC = VOACD = 12VOABCD.  Значит,

VOA′B-′C′D′= VOA′B′C′ + VOA-′C′D′=
 VOABCD    VOABCD    VOABCD

  VOA′B′C′  VOA′C′D-′  -1-- -t-
= 2VOABC +  2VOACD  = 2abc +2ac

Дальше можно было бы строить сечение и использовать для подсчёта отношений теоремы Фалеса и Менелая, но мы воспользуемся координатно-векторным методом.

ABCD  — параллелограмм, поэтому −−→   −→   −→  −−→
CD  =BA = OA −OB,  и, следовательно, −−→  −−→   −→  −−→
OD =OC + OA −OB.

Если точка X  принадлежит плоскости A′B′C′,  а −−O→X = x−O→A + y−−O→B +z−O−→C,  коэффициенты x,y  и z  удовлетворяют уравнению ax+ by+ cz = 1  (это, как известно, уравнение плоскости, даже если система координат не декартова, а точки  ′  ′
A ,B и   ′
C этому уравнению, очевидно, удовлетворяют).

−−→   −−→    −−→   −→   −−→
OD ′ = tOD = tOC +tOA − tOB

at− bt+ ct= 1

t= --1----
   a− b+c

Получаем

VOA′B′C′D′   1        1        a− b+ c+b       a+ c
-VOABCD--= 2abc + 2ac(a−-b+c) = 2abc(a−-b+c) = 2abc(a−-b+-c)

Обратная величина является ответом к задаче.

Ответ:

 2abc(a−-b+-c)
    a+ c

Ошибка.
Попробуйте повторить позже

Задача 4#79898

Сфера радиуса 10 вписана в каркас тетраэдра (т.е. касается всех его рёбер). Сумма длин рёбер тетраэдра составляет 180. Докажите, что объём тетраэдра не превосходит 3000.

Подсказки к задаче

Подсказка 1

Во-первых, нам надо понять, через что оценивать. Если у нас есть сфера, которая касается ребер, то это значит, что её сечения гранями - это вписанные в треугольники этих граней окружности. А это значит, что мы можем оценивать объем тетраэдра через маленькие тетраэдры OABC, OABD, OACD, OBCD , где О - центр сферы.

Подсказка 2

Понятно, что ситуация относительно каждого тетраэдра равноправна, потому, нам надо получить оценку только на 1 (то есть, если мы получили какую-то оценку на один маленький тетраэдр, то сможем получить эту же оценку и на другие). Возьмем тогда тетраэдр OABC. Если центр вписанной окружности - это I, то объём OABC равен 1/3 * OI * S(ABC). Как нам тогда связать периметр и объем?

Подсказка 3

Верно, нам надо выразить площадь треугольника как p_abc*r (p_abc - полупериметр). Тогда у нас в силу равнозначности тетраэдров и равнозначности сторон треугольника здесь, при суммировании объемов будет один и тот же коэффициент при каждом ребре тетраэдра и значит, мы выразим площадь. Остается связать r*OI(то, что вылезает при подсчете объема) и R(R - радиус сферы). Как связаны эти три отрезка?

Подсказка 4

Они образуют прямоугольный треугольник. При этом, OI^2 + r^2 = R^2. Значит, у нас есть у нас есть факт, что сумма квадратов OI и r равна квадрату R, а мы хотим оценить произведение. Что нам это должно напомнит?

Подсказка 5

Конечно, неравенство о среднем квадратичном и геометрическом. Тогда, произведение OI*r оценивается сверху как R^2/2. Осталось только сложить все неравенства(ведь мы это проделали только относительно одной грани) и получить требуемое.

Показать доказательство

Обозначим тетраэдр ABCD,  центр сферы, вписанной в каркас — O,  а саму сферу — S.  Объём тетраэдра равен сумме объёмов маленьких тетраэдров OABC,  OABD,  OACD  и OBCD.

PIC

Пересечение S  и плоскости ABC  это вписанная окружность треугольника ABC.  Обозначим за I  её центр, тогда OI  — высота тетраэдра OABC.  Пусть R  — радиус сферы S,  r  — радиус вписанной окружности треугольника ABC.  Тогда выполняется равенство  2     2  2
R  =OI  +r .  Тогда

        1           1
VOABC = 3 ⋅OI ⋅SABC = 3OI ⋅pABC ⋅r,

PIC

где pABC  — полупериметр треугольника ABC.  По неравенству о среднем геометрическом и среднем квадратичном получаем

√ ----- ∘---2--2
  OI⋅r≤   OI2+r-,

то есть

OI⋅r≤ OI2+-r2= R2-
         2      2

Таким образом,

VOABC ≤ 1⋅R2⋅pABC
        6

Складывая объёмы четырёх маленьких тетраэдров, получаем

VABCD ≤ 1 ⋅R2⋅(pABC + pABD + pACD+ pBCD),
       6

а сумма полупериметров граней это в точности сумма длин рёбер тетраэдра. Значит,

        1  2
VABCD ≤ 6 ⋅10 ⋅180= 3000
Рулетка
Вы можете получить скидку в рулетке!