Тема МВ / Финашка (Миссия выполнима. Твоё признание — финансист)
Стереометрия на МВ (Финашке)
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела мв / финашка (миссия выполнима. твоё признание — финансист)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#81377

Длина ребра куба ABCDA ′B′C′D′ равна 1. Найдите радиус сферы, проходящей через точку B  и касающейся прямых AD,AA′ и  ′ ′
A B .

Источники: Миссия выполнима - 2024, 11.4 (см. www.fa.ru)

Подсказки к задаче

Подсказка 1

Тут у нас и параллельные прямые, и биссектрисса - давайте поищем равные углы. Помним, что биссектрисса отсекает от параллелограмма равнобедренный треугольник.

Подсказка 2

Верно, получаем MCK равнобедренный. Тогда ОС (где О - центр окружности) - серединный перпендикуляр КМ, а треугольники KOC и МОС равны и равнобедренны. На этом этапе давайте остановимся в изучении чертежа и подумаем, как нам доказать требуемое. Какой признак может указывать на принадлежность точки О описанной окружности BCD?

Подсказка 3

Конечно, в нашем случае проще всего будет доказывать через равенство вписанных углов. Для каких двух углов будет удобнее это доказать?

Подсказка 4

Конечно, легче находится, что OBC и ODC равны и опираются на дугу ОС. Это несложно вывести, если увидеть равенство треугольников BKO и DCO. Теперь остаётся только последовательно всё доказать

Показать ответ и решение

Введём декартову систему координат с центром в точке A  , ось абсцисс — луч AD  , ось ординат — луч AA ′ , ось аппликат — луч AB  .

Пусть   ′
O — проекция центра сферы на грань    ′ ′
AA B B  куба. Определим ее местоположение. Так как сфера касается прямых   ′  ′′
AA ,A B и проходит через точку B  , то расстояние от точки  ′
O до прямых   ′
AA и  ′ ′
A B и точки B  одинаково (обозначим его r  ). Тогда  ′
O лежит на луче  ′
A B  , который является биссектрисой угла    ′ ′
AA B . Осталось учесть условие, что центр сферы касается прямой AD  , то есть нужно проверить, что расстояние от центра до прямой AD  совпадает с радиусом сферы OB  .

Заметим, что есть два случая расположения точки  ′
O (на рисунке показаны разными цветами):

PIC

Случай 1: точка O ′ лежит на диагонали A ′B  .

Тогда из теоремы Пифагора для прямоугольного треугольника O ′HA ′ получим: r2+ r2 = (√2-− r)2  , откуда r =2− √2  . Значит, центр сферы O  имеет координаты (x1;√2-− 1;2− √2)  .

Расстояние до прямой AD  равно ∘(√2−-1)2-+(2−-√2)2  . То есть радиус OB = ∘(√2-− 1)2+(2−-√2)2 = ∘9−-6√2.

Случай 2: точка O ′ лежит на продолжении луча A′B  .

Тогда из теоремы Пифагора для прямоугольного треугольника O ′HA ′ получим: r2+ r2 = (√2-+r)2  , откуда r =2+ √2  . Значит, центр сферы O  в этом случае имеет координаты (x ;−√2-− 1;2+ √2)
  2  .

Расстояние до прямой AD  равно ∘--√-----2-----√--2
 (−  2− 1) + (2+ 2)  . То есть радиус      ∘ --√----2-----√--2- ∘ ---√--
OB =   (−  2− 1)+ (2+  2) =   9+6  2.

Ответ:

 ∘9-±-6√2

Ошибка.
Попробуйте повторить позже

Задача 2#63948

На поверхности правильного тетраэдра ABCD  построена замкнутая линия, каждая точка X  которой обладает следующим свойством: длина кратчайшего пути по поверхности тетраэдра между X  и серединой ребра AB  равна длине кратчайшего пути по поверхности тетраэдра между X  и серединой ребра CD  . Найдите длину этой линии, если длина ребра тетраэдра равна 1.

Источники: Миссия выполнима - 2023, 11.4 (см. mission.fa.ru)

Подсказки к задаче

Подсказка 1

У нас тут рассматривается расстояние по поверхности...Как можно перевести картинку на плоскость в таком случае, чтобы было более удобно?

Подсказка 2

Рассмотреть развертку! Вот пусть мы развернули его так, что получился ромб ABCD, где AC - общее ребро у развернутых граней. Но все еще непонятно как работать с линиями ломаной, которые не получится нормально нарисовать на развертке. Что можно в таком случае придумать?

Подсказка 3

Давайте мысленно "порежем" нашу ломаную ребрами и отрезками AN, BN, CM, DM, где M и N - середины AB и CD, и рассмотрим только ту часть ломаной, что внутри треугольника AMC на нашей развертке. Наверное, в этом треугольнике не сложно найти такие точки на развертке?

Подсказка 4

Например, пусть P - точка ломаной внутри AMC. Понятно, что кратчайший путь от P до M - это PM, а кратчайший путь от P до N - это отрезок PN). Такие отрезки должны быть равны, а значит какое ГМТ у P?

Подсказка 5

Серединный перпендикуляр к MN! Достаточно легко теперь найти длину этой ломаной внутри AMC. А что делать с остальными частями этой ломаной? Вот что: попробуйте осознать, что они будут такими же, например, из соображений симметрии)

Показать ответ и решение

Пусть M  и N  — середины ребер AB  и CD  соответственно. Из соображений симметрии ясно, что ребрами AC,BC, BD,AD  и отрезками AN, BN,CM, DM  линия, о которой идет речь в условии задачи разбивается на 8 равных. Поэтому достаточно рассмотреть точки, принадлежащие треугольнику AMC  .

PIC

Пусть P  - одна из таких точек. Тогда кратчайшим путем между P  и M  служит отрезок PM  , а кратчайшим путем между P  и    N  - двухзвенная ломаная PKN  , вершина K  которой принадлежит ребру AC  (в случае P ∈AC  имеем просто отрезок PN)  . На развертке тетраэдра объединение граней ABC  и ADC  представляет собой ромб ABCD  , а ломаная PKN  - отрезок PN  в нем. Условие P M =P N  означает, что P  лежит на серединном перпендикуляре к отрезку MN  ; следовательно геометрическим местом точек P  служит отрезок QR  , где Q  - середина ребра AC  (и середина отрезка MN  ) R  - точка на отрезке MC  , ∠MQR  = 90∘ (см рисунок).

Найдем длину отрезка QR  . Легко видеть, что ∠QMR  = 30∘ , а отрезок QM  , будучи средней линией треугольника ABC  , имеет длину 1
2 . Поэтому QR = 1tg30∘ = √3
     2        6

Умножив это число на 8, получим ответ к задаче: 4√3-
 3

Ответ:

 4√3
 3

Ошибка.
Попробуйте повторить позже

Задача 3#76531

 A′,B ′ и C′ – проекции вершины S  правильной треугольной пирамиды SABC  на биссекторные плоскости двугранных углов при рёбрах BC,  AC  и AB.  Найдите тангенс каждого из этих углов, если объём пирамиды   ′ ′′
SAB C в 10  раз меньше объёма пирамиды SABC.

Источники: Миссия выполнима - 2022, 11.4 (см. mission.fa.ru)

Показать ответ и решение

PIC

Точки S1,S2,  и S3  симметричные S относительно биссекторных плоскостей, лежат в плоскости ABC.  А поскольку тройка этих биссекторных плоскостей переходит в себя при повороте на 60∘ вокруг оси пирамиды, то этим свойством обладает и тройка точек S1,S2,S3.  Следовательно, треугольник △S1S2S3  –правильный, и его центр, который мы обозначим через O,  совпадает с центром треугольника △ABC.

Заметим, далее, что пирамида SS1S2S3  – образ пирамиды SA′B ′C ′ при гомотетии с центром S  и коэффициентом 2.  С учётом условия задачи это означает, что отношение объёмов пирамид SABC  и SS1S2S3  равно 10:23 =5 :4.  А поскольку у этих пирамид общая высота SO,  то и отношение площади треугольника △ABC  к площади треугольника △S1S2S3  равно 5:4.  В качестве следствия получается равенство OA :OS1 = √5 :2,  которое будет нами использовано.

Обозначив величину двугранного ребра при ребре BC  через φ  , точкой, симметричной S  относительно соответствующей биссекторной плоскости будем считать S1.  Тогда φ =∠SP A =∠SP S1,  где P  -– середина ребра BC  ; треугольник △SP S1  – равнобедренный (SP =P1S),  откуда

∠SS P = 180∘-− φ,OS =SO ctg∠SS P = SOtg φ
   1       2     1           1       2

А поскольку

                   φ-
OA = 2⋅AP = 2⋅SOctg2,

то

√5   OA   2ctgφ
-2-= OS-= -tg φ
       1     2

tg φtgφ = 4√-
  2       5

При 0∘ < φ< 90∘ левая часть последнего равенства равна ∘1+-tg2φ− 1,  что позволяет найти

     ∘16+-8√5-
tgφ =  ---5---
Ответ:

 ∘ 16+-8√5
  ---5---

Ошибка.
Попробуйте повторить позже

Задача 4#76529

Через каждую пару противоположных рёбер куба проведена плоскость. На сколько частей эти плоскости разбивают куб?

Источники: Миссия выполнима - 2022, 11.2 (см. mission.fa.ru)

Подсказки к задаче

Подсказка 1

Нам довольно трудно представить разбиение на части внутри куба, так что давайте начнём с рассмотрения граней. Как проведённые плоскости разобьют поверхность куба?

Подсказка 2

Да, каждая грань делится плоскостями на 4 треугольника, соответственно вся площадь делится на 24 части. Теперь можем подумать о том, как плоскости разделяют фигуру внутри. Будут ли образовываться такие "внутренние" части, у которых нет общих точек с поверхностью?

Подсказка 3

Да, получаем, что все плоскости пересекаются в центре, при этом каждой части соответствует ровно один треугольник с поверхности. Какой мы из этого можем сделать вывод?

Показать ответ и решение

PIC

Каждая такая плоскость проходит через пару параллельных диагоналей противоположных граней куба. Поэтому каждая грань разбита на 4,  а вся поверхность куба —на 4⋅6  треугольника, каждые два из которых отделены друг от друга хотя бы одной из проведённых плоскостей. А поскольку все проведённые плоскости пересекаются в центре куба, то каждая часть содержит в качестве одной из своих граней один из этих 24  треугольников. Следовательно, число частей разбиения также равно 24.

Ответ: 24
Рулетка
Вы можете получить скидку в рулетке!