Тема . Региональный этап ВсОШ и олимпиада им. Эйлера
Олимпиада им. Эйлера
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела региональный этап всош и олимпиада им. эйлера
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80235

Вершина F  параллелограмма ACEF  лежит на стороне BC  параллелограмма ABCD.  Известно, что AC = AD  и AE = 2CD.  Докажите, что ∠CDE = ∠BEF.

Показать доказательство

Первое решение. Пусть M  — середина отрезка CF.  Поскольку четырехугольник ACEF  — параллелограмм, точка M  является серединой отрезка AE.

PIC

Обозначим ∠MAC  = ∠MEF = α  и ∠ABC  =∠ADC  =∠ACD  = β.  Так как AM = AE ∕2 =CD, AMCD  — равнобокая трапеция, откуда мы получаем что α =∠MAC  = ∠MDC  и MD  = AC = AD.  Кроме того, поскольку MA  =CD = AB  и ∠ABM  =∠ADC  =β,  равнобедренные треугольники ABM  и ACD  подобны, поэтому AB∕BM  =AC ∕CD.

Треугольники BME  и EMD  также подобны, так как

∠BME  = 180∘ − β =180∘− ∠DMA = ∠EMD

и BM ∕ME = BM ∕MA  =CD ∕AD = MA∕MD  =EM ∕MD.  Значит, ∠BEM  = ∠EDM,  откуда ∠BEF = ∠BEM  − α =∠EDM − α= ∠CDE,  что и требовалось.

Второе решение. Как и в первом решении, введём точку M  и покажем, что AMCD  — равнобокая трапеция. Отложим на луче   DC  отрезок CS = DC = ME.  Поскольку ∠SCB = ∠ABC = β =∠EMC,  перпендикуляры, опущенные на BC  из точек E  и S,  равны, откуда SE ∥BC.  Поэтому четырёхугольники MSEC  и ASED  — также равнобокие трапеции; в частности, ASED  вписана в некоторую окружность ω.  С другой стороны, поскольку отрезки AB  и CS  параллельны и равны, ACSB  — параллелограмм, откуда BS = AC =AD.  Значит, DABS  — также равнобокая трапеция. Поскольку точки A,S  и D  лежат на ω,  точка B  лежит на этой же окружности. Из вписанного четырёхугольника BSED  теперь получаем ∠SBE = ∠SDE = ∠CDE.  Осталось заметить, что BSEF  — параллелограмм (ибо BS  параллелен и равен F E  ), откуда ∠BEF  =∠SBE  =∠CDE.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!