Тема Всесиб (Всесибирская открытая олимпиада школьников)
Комбинаторика на Всесибе: игры, графы, конструктивы
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела всесиб (всесибирская открытая олимпиада школьников)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#80748

У вредного Васи есть клетчатая полоска длины 13 клеток и лента длины N≥ 13  клеток, каждая шириной в одну клетку. Вася хочет разрезать полоску на кусочки произвольной длины из нескольких целых клеток по своему усмотрению, а затем уложить часть из них на ленту в некотором порядке так, чтобы в какой-то момент осталось не менее одного кусочка, ни один из которых уложить уже нельзя. При этом кусочки укладываются строго по клеткам и не могут выходить за пределы ленты, ни одна клетка не должна быть накрыта ими дважды и, если на ленте есть место, куда можно уложить очередной кусочек, Вася должен уложить его в одно из таких мест по своему выбору. При каком минимальном N, как бы Вася ни старался, ему не удастся задуманное, то есть придётся уложить все кусочки?

Источники: Всесиб-2024, 11.5 (см. sesc.nsu.ru)

Подсказки к задаче

Подсказка 1

Давайте попробуем себе немножко упростить задачу и посмотреть на финальный шаг, когда Вася не может уложить ни один из своих кусков, можно ли как-то без ограничения общности заменить их?

Подсказка 2

Да, давайте скажем, что в конце у Васи остался ровно 1 кусок длины x, и он положил до этого k отрезков. Давайте тогда попробуем как-то оценить N, интуитивно должно казаться, что длина каждого из k кусочков должна быть как можно меньше, и они должны выступать в качестве ограничителей для нашего кусочка x.

Подсказка 3

Если всё ещё не получается получить оценку, то не расстраивайтесь и подумайте, какое наибольшее расстояние может быть между двумя соседними кусочками, чтобы между ними не поместился кусок x, а сколько таких промежутков, куда можно в теории положить x (не забудьте, что лента по краям тоже ограничена), а также не забудьте про сами k кусочков, они тоже занимают место на ленте.

Подсказка 4

Мы получили, что N ≤ (x-1)(k+1) + (13-x) ≤ 48, остаётся только придумать пример, когда N=48 (потому что для меньших свойство о непокрываемости), и радоваться решённой задаче!

Показать ответ и решение

Заметим, что если в какой-то ход Васи осталось больше одного кусочка, а оставшиеся поместить нельзя, то можно рассмотреть разрезание, где все эти кусочки объединяются в один, а другие выкладываются на ленту тем же образом. Понятно, что такой кусок-склейка также не будет помещаться.

Значит, можно без ограничения общности предположить, что у Васи должен остаться ровно один кусок, который нельзя поместить. Пусть его длина x  , а количество положенных кусочков равно k  . Тогда x+ k≤ 13  , при этом длина полосы N ≤ (x − 1)⋅(k+1)+ 13− x  , так как 13 − x  - количество клеточек занятых остальными кусочками, а k+ 1  - количество ’зазоров’, в которые теоретически мы могли поместить кусок длины x  , но он не поместился, так как размеры зазоров не превосходят (x− 1)  .

Тогда Вася достигает своей цели при

N ≤(x− 1)⋅(k+ 1)+13− x≤ (x− 1)⋅(14− x)+ 13− x =

= −x2+ 14x− 1≤ −72+ 14⋅7− 1 =48

То есть если N ≥ 49  , то Вася не сможет выполнить задуманное.

А при N < 49  Васе достаточно разрезать полоску на 6  кусков размера 1  и 1  кусок размера 7  , при этом расположить 6  кусков размера 1  он должен на расстояний не более 6  клеток друг от друга и от концов. (Чего он сможет достичь, так как N ≤ 6⋅7+ 6  )

Ответ: 49

Ошибка.
Попробуйте повторить позже

Задача 2#80745

Найти все множества X  , состоящие из различных натуральных чисел от 1 до 50 такие, что: 1) X содержит не все числа от 1 до 50, но не меньше трёх из них, 2) X содержит числа 1 и 50, 3) для любых трёх чисел x< y < z  из X число x− y+ z  также принадлежит X.

Источники: Всесиб-2024, 11.2 (см. sesc.nsu.ru)

Подсказки к задаче

Подсказка 1

Попробуйте упорядочить все взятые числа, для фиксированного, подходящего под условия набора и посмотреть на три подряд идущих числа. Что можно сказать?

Подсказка 2

Если у нас есть три подряд идущих числа x, y, z: x < y < z, то число x + z - y, которое больше x, но меньше z, то оно равно y. Что же это значит?

Подсказка 3

Это значит, что y = (x + z)/2, а это критерий арифметической прогрессии. Значит, наш набор - это арифметическая прогрессия. Что мы можем тогда сказать, если она начинается с 1, а заканчивается 50?

Подсказка 4

Это значит, что 49 делится на разность между соседними членами. И либо это 1, либо 7, либо 49. Все варианты нам подходят или нет?

Показать ответ и решение

Отсортируем числа из множества X  по возрастанию:

x1 < x2 <x3 <...<xk

Для любых трех последовательных чисел xi < xi+1 <xi+2  число xi+xi+2− xi+1  по условию лежит в X  . Но

x < x+ x   − x  < x
 i  i   i+2   i+1   i+2

Тогда это число должно равняться xi+1  , откуда xi+1 = xi+xi+2
         2  . В силу произвольности выбора номера i  получаем, что каждое число является средним арифметическим двух его соседей, но тогда это арифметическая прогрессия.

По условию числа 1,50∈ X  , то есть 50= xk = x1+(k− 1)⋅d= 1+(k− 1)⋅d  , где d  - разность прогрессии.

(k− 1)⋅d= 49  и в силу того, что 50> k> 2  , а d  натуральное. Имеем единственное решение k= 8,d =7  .

Ответ:

 X = {1,8,15,22,29,36,43,50}

Ошибка.
Попробуйте повторить позже

Задача 3#68024

На одной стороне каждой из 100 карточек написали одно из натуральных чисел от 1 до 100 включительно (каждое число записано ровно на одной карточке), после чего перевернули их обратными сторонами вверх и разложили в произвольном порядке на столе. За один вопрос Вася может указать на две любые карточки, после чего получает от ведущего ответ, являются ли записанные на них числа соседними (отличающимися на 1). За какое минимальное число вопросов Вася может гарантированно назвать хотя бы одну пару карточек, на которых написаны соседние числа?

Источники: Всесиб-2023, 11.5 (см. sesc.nsu.ru)

Подсказки к задаче

Подсказка 1

Поймём, что эта задача на оценку + пример! Чтобы придумать пример, подумайте о том, сколько соседей у каждого числа от 1 до 100.

Подсказка 2

Да, у каждого числа от 2 до 99 включительно — два соседа, а у чисел 1 и 100 — один сосед! Тогда можно увидеть алгоритм: задавать вопросы про одну и ту же карточку, постоянно меняю другую карточку. Какой ответ даёт этот алгоритм?

Подсказка 3

Верно, при таких действиях за 98 вопросов мы точно сможем назвать соседние числа! Осталось доказать, что за меньшее число вопросов доказать нельзя. Для этого нужно подумать о задаче в терминах теории графов. Тогда карточки — это вершины, а вопросы — это ребра! Что нужно найти в графе, чтобы доказать, что 98 — искомый ответ на задачу?

Подсказка 4

Да, надо найти Гамильтонов путь (такой путь, в котором каждая вершина встречается ровно один раз) по всем вершинам в графе, в котором ни одно ребро не является ребром, которое появилось вследствие вопроса Васи! Попробуйте посмотреть на задачу при малых n и доказать это утверждение по индукции!

Подсказка 5

База индукция тривиальна, поэтому давайте сразу подумаем о переходе! Такс, а что если посмотреть на вершину из которой выходит ровно одно ребро? А что будет в графе без неё? Можно ли в нём построить нужный нам путь?

Подсказка 6

Да. если есть такая вершина, то задача легко решается по индукции, ведь мы всегда можем переходить от случая с n вершинами к n+1 вершине с помощью добавления одного нужного нам ребра! Но вот незадача: что если нет вершин, из которых ихходит ровно одно ребро?

Подсказка 7

А если нет вершин с степенью 1, то можно точно утверждать, что есть хотя бы две вершины со степенью 0. Остаётся посмотреть на две этих вершин и еще одну вершину степень которой хотя бы 2!

Показать ответ и решение

Пример. Пусть Вася выберет какую-то карточку A  и задаст 98  вопросов, в каждом из которых он спросит про A  и одну из 99  карточек, отличных от A.  Общее количество чисел, не соседних с числом, написанным на A  не превосходит 98,  если на A  написано 1  или 100,  и 97,  если на A  написаны числа от 2  до 99.  Тогда либо в одном из 98  ответов будет дан положительный ответ, и Вася нашёл нужную пару соседних чисел, либо все эти карточки содержат числа, не соседние с числом на A.  Следовательно, оставшаяся карточка содержит число, соседнее с числом на A.  Таким образом, Васе достаточно 98  вопросов.

Оценка. Докажем, что, если Вася задаст всего 97  любых вопросов, он может не найти ни одной пары карточек с соседними числами. Предположим противное, что задав некоторые 97  вопросов он смог точно указать на пару карточек с соседними числами. Переведём задачу на язык теории графов. Карточки будем считать вершинами графа G,  а заданные Васей вопросы – рёбрами G  (синими рёбрами), соединяющими соответствующие пары карточек. К этим рёбрам нужно добавить ещё одно, соответствующее той паре карточек, на которых написана пара соседних, по версии Васи, чисел. Теперь нужно доказать, что вершины G  могут быть занумерованы в таком порядке, что ни одно ребро не соединяет две вершины с соседними номерами. То есть, нужно дорисовать в графе путь из 99  рёбер, проходящий последовательно по всем 100  вершинам, и не содержащих ни одного из 98  «Васиного» синего ребра. Это будет означать, что Васина догадка не верна. Назовём такой путь красным и будем строить его методом математической индукции по числу вершин графа G.

Предположим, что в любом графе с числом вершин n≤ 99,  в котором проведено не больше n − 2  синих рёбер, существует красный путь P  по всем вершинам, не содержащий синих рёбер. Построим красный путь в G.

1) Пусть в G  есть «крайняя» вершина V,  из которой выходит ровно одно ребро e.  В графе G1,  полученном из G  удалением вершины v  и ребра e  число вершин равно 99,  а рёбер – не больше 97,  выполнено предположение индукции, поэтому в G1  можно построить красный путь длины 98  с началом в вершине a  и концом в вершине b.  Тогда ребро e  не соединяет вершину v  с одной из a  или b,  проведя красное ребро из v  в эту вершину, получим красный путь длины 99  в G.

2) Пусть в G  нет вершин, из которых выходит ровно одно ребро. В таком случае все синие рёбра инцидентны в сумме 196  вершинам степени не меньше 2  каждая, следовательно, среди них не больше 98  различных. Следовательно, в G  не меньше двух вершин u,v  из которых не выходит ни одного синего ребра. Удалим из G  вершины u,v  и два ребра, выходящие из некоторой четвёртой вершины s  (но не саму вершину). Полученный граф G1  снова удовлетворяет предположению индукции и в нём можно построить красный путь длины    97  с началом в вершине a  и концом в вершине b.  Если он не проходит через s,  или проходит, но не проходит через удалённые рёбра, соединим a  с u  и b  с v  и получим красный путь в G  длины 99. В оставшихся случаях, обозначим за x  и y  вторые концы удалённых рёбер. Если красный путь в G1  проходит через x,s,y,  заменим этот фрагмент на x,u,s,v,y.  Если он проходит только через одно удалённое ребро, скажем, через x,s,  заменим его на x,u,v s.  В обоих случаях получится красный путь в G.

База индукции - случаи графов с 3 и 4 вершинами - очевидна.

Ответ: 98

Ошибка.
Попробуйте повторить позже

Задача 4#71446

Перестановка чисел 1,2,3,...,n  в некотором порядке называется забавной, если в ней каждое число, начиная со второго слева, либо больше всех чисел, стоящих левее него, либо меньше всех чисел, стоящих левее него. Например, перестановка 3,2,1,4,5,6  является забавной, а перестановка 3,1,2,4,5,6  — нет. Найти количество всех различных забавных перестановок чисел 1,2,3,..,n.

Источники: Всесиб-2022, 11.3 (см. sesc.nsu.ru)

Подсказки к задаче

Подсказка 1

Если собирать последовательности с первого элемента, то будет трудно...но можно пойти с конца! Сколько есть вариантов для последней позиции?

Подсказка 2

Всего 2!(какие?). Теперь мы можем выбирать предпоследнюю цифру, но ведь она связана с последней? Какие тогда комбинации последних двух цифр могут быть?

Подсказка 3

(n-1, n), (1, n), (2, 1), (n, 1). Интересно, было 2 варианта, стало 4...попробуем обобщить наши рассуждения. Подумаем, как выглядят первые k чисел при любом k от 1 до n.

Показать ответ и решение

Пойдём с конца. Последнее число a
 n  забавной перестановки либо больше, либо меньше всех чисел множества 1,2,3,..,n,  следовательно, оно равно 1 или n.  Предпоследнее число an−1  забавной перестановки либо больше, либо меньше всех чисел множества 1,2,3,...,n,  кроме an,  то есть это наименьший или наибольший элемент во множестве 1,2,3,...,n− 1  или во множестве 2,3,...,n.  В каждом из случаев есть ровно две возможности выбора, варианты для двух последних чисел перестановки выглядят так (n − 1,n),(1,n),(2,1),(n,1).  Несложно убедиться, что при любом k =n,n− 1,...,2,1  первые k  чисел a1,a2,...,ak  перестановки образуют интервал из k  подряд идущих чисел из множества 1,2,3,...,n,  а число ak  является в этом интервале минимальным или максимальным — всего две возможности, кроме самого первого числа a1,  для которого остаётся единственная возможность. Всего получаем ровно  n−1
2  возможностей выбора.

Ответ:

 2n−1

Ошибка.
Попробуйте повторить позже

Задача 5#80611

В некоторых клетках прямоугольной доски размера 101  на 99  сидят по одной черепашке. Каждую минуту каждая из них одновременно переползает в одну из клеток доски, соседнюю с той, в которой они находятся, по стороне. При этом, каждый следующий ход делается ими в направлении, перпендикулярном предыдущему: если предыдущий ход был горизонтальным — налево или направо, то следующий будет вертикальным — вверх или вниз, и наоборот. Какое максимальное количество черепашек может перемещаться по доске неограниченное время так, что в каждый момент в каждой клетке будет находиться не более одной черепашки?

Показать ответ и решение

Сначала покажем, что 9800  черепашек могут так перемещаться. Выделим в верхнем левом углу прямоугольник 100 ×98.  Поставим в каждую его клетку по черепашке. Разобьем его на квадратики 2× 2.  И пусть в каждом квадратике черепашки перемещаются по циклу против часовой стрелки. Тогда все черепашки всегда смогут сделать ход.

Докажем, что большего количества черепашек быть не может. Раскрасим нашу доску в 4  цвета в горошек (в первой строке чередуются цвета 1  и 2,  во второй — 4  и 3,  в третьей — снова 1  и 2,  и так далее). Заметим, что клеточек цвета 4  ровно 100⋅98
 4  = 2450.  Рассмотрим клеточки второго цвета. Заметим, что все черепашки на клеточках второго цвета через 2  хода попадут в клеточки четвертого цвета. Тогда в данный момент черепашек на клеточках второго цвета не больше, чем черепашек на клеточках четвертого цвета, то есть также не больше, чем 2450.  Нам осталось оценить сверху количество черепашек, стоящих в данный момент на клеточках первого и третьего цвета. Чтобы это сделать, достаточно подождать один ход, тогда все эти черепашки попадут на клеточки второго и четвертого цвета. А затем проделать те же самые рассуждения. То есть всего черепашек действительно не больше, чем 2450⋅4= 9800.

Ответ:

 100⋅98= 9800

Ошибка.
Попробуйте повторить позже

Задача 6#74742

На доске 10× 10  часть клеток отмечена, причём никакие три отмеченные клетки не образуют уголок. Доказать, что доску можно разбить на домино из двух соседних по стороне клеток, содержащие не более одной отмеченной клетки каждое.

Источники: Всесиб-2020, 10.4

Показать доказательство

Разобьём доску 10× 10  на квадратики 2 ×2  клетки. Ввиду того, что никакие три отмеченные клетки не образуют трёхклеточный уголок, каждый такой квадратик содержит не более двух отмеченных клеток. Если две отмеченные в нём клетки — соседние по стороне, то разобьём его на два домино линией сетки, содержащей эту сторону. В случаях, когда в квадратике отмеченные клетки не соседние, или их не больше одной, разбиваем его на домино произвольным способом, скажем, на горизонтальные. Разбив указанным образом каждый квадратик, получим разбиение доски 10×10  на домино, содержащие не более одной отмеченной клетки каждое.

Ошибка.
Попробуйте повторить позже

Задача 7#68082

Трое играют в настольный теннис, причём игрок, проигравший партию, уступает место игроку, не участвовавшему в ней. В итоге оказалось, что первый игрок сыграл 21  партию, а второй 10.  Сколько партий сыграл третий игрок?

Источники: Всесиб - 2017, 10.2(см. sesc.nsu.ru)

Показать ответ и решение

По условию первый игрок сыграл 21  партию, поэтому всего было сыграно не менее 21  партии. Из каждых двух партий подряд второй игрок хотя бы в одной должен участвовать, значит, партий было не более 2⋅10+1 =21.  Следовательно, была сыграна всего 21  партия, и второй игрок участвовал в каждой из них. В 10  партиях он встречался с первым, а в оставшихся 11  партиях — с третьим. Пример такого турнира: первый игрок встречается со вторым в партиях с чётными номерами, а с третьим – в партиях с нечётными номерами.

Ответ: 11
Критерии оценки

 Если ответ угадан и приведѐн пример турнира: 1 балл.

Присутствует замечание, что из каждых двух партий подряд второй игрок хотя бы в одной должен участвовать: 2 балла.

Не приведѐн пример турнира: минус 1 балл.

Ошибка.
Попробуйте повторить позже

Задача 8#70787

По координатной плоскости, стартуя в начале координат, прыгает кузнечик. Первый прыжок длины один см направлен вдоль оси OX,  каждый следующий прыжок на 1  см длиннее предыдущего, и направлен перпендикулярно предыдущему в одну из двух сторон по его выбору. Сможет ли кузнечик после сотого прыжка оказаться в начале координат?

Подсказки к задаче

Подсказка 1

Давайте прочитаем ещё раз условие и поймём, что от нас вообще хотят в задаче. Нужно, чтобы кузнечик попрыгал и вернулся обратно. А что это значит, если вертикальные прыжки он тоже делает? Как можно переформулировать задачу?

Подсказка 2

Верно, кузнечик должен вернуться обратно на ось 0x. Причём заметим, что он делает в вертикальном направлении прыжки чётной длины. Тогда за чётностью напрямую тут смотреть особо не поможет, потому что никакого противоречия не будет. Тогда какой остаток удобнее всего рассмотреть с чётными числами? А сколько различных остатков будет?

Подсказка 3

Ага, здесь удобно смотреть на остатки при делении на 4. Заметим также, что их тут всего два различных — 25 остатков 2 и 25 остатков 0. Но число 0 делится на 4, тогда и сумма этих остатков должна делиться на 4. А так ли это? Поймите это, посмотрев на количество остатков 2, и получите противоречие. Победа!

Показать ответ и решение

Кузнечник делает прыжки длиной 1,3,...99  вдоль оси Ox,  а длиной 2,4,...100  — вдоль оси Oy.  Покажем, что по оси Oy  он не сможет попасть в 0,  тогда и в начале координат он не окажется. Действительно, рассмотрим остатки прыжков по модулю 4  — это 2,0,2,0,...2,0,  то есть по 25  нулей и двоек. Поскольку двоек нечётное количество, то при любой расстановке знаков получится число, дающее остаток 2  при делении на 4,  значит, кузнечик не сможет попасть в 0  и не попадёт в начало координат.

Ответ:

Нет

Ошибка.
Попробуйте повторить позже

Задача 9#38862

Докажите, что в любой компании из 13  человек либо найдётся человек, знающий четырёх других, либо найдутся четверо, попарно не знакомых. Знакомства обоюдны — если А знает Б, то и Б знает А.

Источники: Всесиб-2015, 11.4 (см. sesc.nsu.ru)

Подсказки к задаче

Подсказка 1!

1) Хм, какие-то попарные знакомства, это же граф! Давайте посмотрим на условие с таким взглядом. Нам нужно найти вершину степени хотя бы 4...

Подсказка 2!

2) Давайте попробуем идти от противного! То есть мы хотим попробовать из того, что степени всех вершин меньше трех, получить, что тогда есть независимое множество!

Подсказка 3!

3) Может рассмотрим первого человека и посмотрим, сколько тогда с ним незнакомых, поищем независимое множество там..

Показать ответ и решение

Будем говорить в терминах графа — либо найдётся вершина степени хотя бы 4  , либо независимое множество размера 4  . Пусть степень каждой вершины не больше 3  . Выберем человека A  , он не знаком хотя бы с 9  другими, поэтому достаточно найти независимое множество размера 3  на них. Теперь выберем произвольную вершину B  из этих 9  . Она соединена не более, чем с тремя из них, потому достаточно показать, что среди оставшихся 5  найдутся две, между которыми нет ребра, что очевидно, поскольку любая из них имеет степень меньше 4  , то есть в качестве C  берём любую из пяти, а в качестве D  ту, с которой C  не знаком.

Ответ:

что и требовалось доказать

Ошибка.
Попробуйте повторить позже

Задача 10#38863

Докажите, что среди пяти произвольных различных вершин правильного (все стороны и все углы которого равны) 15  -и угольника всегда найдутся три, являющихся вершинами равнобедренного треугольника.

Подсказки к задаче

Подсказка 1!

1) Нам нужно найти равнобедренный треугольник в правильном многоугольнике. А равнобедренный треугольник означает, что мы хотим найти два равных отрезка с общей вершиной. Вершин пять. А сколько у нас всего отрезков будет?

Подсказка 2!

2) Да, 10! Теперь осталось посмотреть, сколько среди них может быть отрезков разной длины! Смотрите, если бы отрезков одной длины было хотя бы 3, мы бы смогли что-то сказать? А если только по два отрезка равной длины для всех длин?

Подсказка 3!

3) Это уже сложнее. Всего в 15-угольнике у нас 7 вариантов для длины отрезка. Сколько в таком случае у нас разных длин, если каждой длины по два отрезка?

Подсказка 4!

4) Верно, 3! А теперь давайте посмотрим на эти отрезки немного иначе. Если у нас нет треугольника, то будет 4 вершины, которые составляют эти две пары равных отрезков, образуют четырехугольник с равными сторонами или диагоналями. Осталось рассмотреть возможность существования в нашей фигуре подобного четырехугольника.

Показать доказательство

Каждой паре выбранных точек соответствует длина отрезка, их соединяющего, которая может принимать 7  различных значений (длины диагоналей или стороны). Всего пар  2
C5 = 10  . Если равны длины каких-то трёх отрезков, то по принципу Дирихле у каких-то двух есть общая точка, они и образуют равнобедренный треугольник.

Далее рассмотрим более сложный случай, то есть есть не более двух отрезков для каждой длины. Отсюда следует, что пар с равной длиной будет хотя бы 3  . Если в какой-то паре отрезки совпали по одной из вершин, то мы нашли нужный треугольник, потому считаем, что в каждой паре отрезков все четыре вершины различны, то есть образуют четырёхугольник, в котором равны либо две стороны, либо диагонали.

Заметим, что обе пары сторон равны быть не могут, поскольку тогда мы бы получили прямоугольник, а в 15  -угольнике не может быть диагонали-диаметра. Отсюда следует, что в четырёхугольнике не более двух пар равных отрезков, одной из которых будут диагонали. Однако пары равных отрезков три, потому есть два различных четырёхугольника, которые пересекаются по трём точкам (всего точек 5  ).

Заметим, что каждый четырёхугольник является равнобедренной трапецией, в которой диагональ является наибольшим отрезком. При выборе любых трёх точек диагональ будет одним (наибольшим) из отрезков полученного треугольника, потому диагонали трапеций равны. Но тогда они образуют три равных отрезка из первого пункта, поскольку обе диагонали различных четырёхугольников не могут совпадать.

Рулетка
Вы можете получить скидку в рулетке!