Тема . ММО (Московская математическая олимпиада)
Теория чисел на ММО
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ммо (московская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#72978

Таня последовательно выписывала числа вида n7− 1  для натуральных чисел n= 2,3,...  и заметила, что полученное при n= 8  число делится на 337.  А при каком наименьшем n >1  она получит число, делящееся на 2022?

Источники: ММО-2022, 11.2, (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

Никому ещё не вредило разложение чисел на простые множители в задачках на теорию чисел. Давайте разложим 2022 и поймём, какие условия накладывает каждый из множителей.

Подсказка 2

Мы понимаем, что нам достаточно просто перебрать все остатки по каждому из модулю, чтобы найти все условия на n, но как бы ускорить этот перебор?

Подсказка 3

Попробуйте подумать, какое максимальное кол-во решений может иметь сравнение n^7 = 1 (mod 337) на отрезке [0;336], а ещё подумать, что происходит с решением сравнения, если его возвести в произвольную положительную степень?

Подсказка 4

Мы понимаем, что решений не больше 7 и что возведение решения в положительную степень не портит сравнение, остаётся перебрать маленькие n, пока мы не сможем применить эти 2 факта, проверить, что хотя бы одно из них удовлетворяет остальным условиям, полученным из сравнений по mod 2 и mod 3, и выбрать из них наименьшее.

Показать ответ и решение

Пусть натуральное число n  таково, что n7− 1  делится на 2022 =2⋅3⋅337.  Тогда n7− 1  делится на 2  и на 3,  поэтому n  — нечётное число, имеющее остаток 1  при делении на 3.  Помимо того,  7
n − 1  делится на 337.  Заметим, что если два числа сравнимы по модулю 337  (т.е. дают одинаковые остатки при делении на 337  ), то седьмые степени этих чисел также сравнимы по модулю 337.  Это означает, что для нахождения искомого числа достаточно рассмотреть все целые числа n  из промежутка [0;336],  удовлетворяющие сравнению  7
n ≡ 1(mod337).

Мы будем пользоваться следующим утверждением. Пусть p  — простое число, Pk  — многочлен степени k  с целыми коэффициентами, старший коэффициент которого не делится на p;  тогда сравнение Pk(n) ≡0(modp)  имеет не более k  решений среди целых чисел 0 ≤n <p.

Найдём теперь все решения сравнения  7
n ≡ 1(mod337)  на отрезке [0;336].  Нам известны два решения: n1 =1  , n2 = 8.  Заметим, что если n  — решение сравнения n7 ≡ 1  (mod337),  то для любого натурального s  числа ns  также являются решениями. Следовательно, решениями данного сравнения являются числа

82 = 64≡ 64(mod337)
83 = 512 ≡175(mod337)
84 ≡ 8⋅175 ≡52(mod337)
 5
8 ≡ 8⋅52≡ 79(mod337)
86 ≡ 8⋅79≡ 295(mod337)

Итак, мы нашли семь решений на отрезке [0;336]:n1 = 1,n2 =8,n3 = 52,n4 = 64,n5 =79,n6 = 175,n7 = 295.  Так как число 337  простое, по сформулированному выше утверждению других решений на этом отрезке нет. Из них нечётными и имеющими остаток 1  при делении на 3  являются n1 =1,n5 = 79,n6 =175  и n7 = 295.  Из них наименьшее, большее 1,  есть n5 = 79.

Ответ:

 79

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!