Тема СТЕРЕОМЕТРИЯ
Тела вращения
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Разделы подтемы Тела вращения
Подтемы раздела стереометрия
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#83857

Коническое (пожарное) ведро было заполнено водой до самого края.

PIC

В него положили шар, причем он полностью покрылся водой. Покажите, что при этом из ведра вылилось не более половины бывшей там воды.

Источники: КФУ - 2024, 11.4 (см. malun.kpfu.ru)

Подсказки к задаче

Подсказка 1

Если мы хотим доказать, что что-то меньше чего-то, то нам надо взять это что-то максимальным, а после этого доказать, что даже в этом случае выполняется требуемое. Шар у нас лежит не выше уровня воды, при этом, он касается поверхности конуса. В какой ситуации тогда радиус шара будет максимальным(ну а значит и его объем)?

Подсказка 2

Предельное положение - это когда шар вписан в конус. А значит, окружность радиуса такого же как у шара вписана в сечение конуса, которое проходит через диаметр окружности в основании и вершину. Значит, мы можем взять за r - радиус шара, за h - высоту конуса и за R - радиус окружности в основании конуса и тогда картинка однозначно фиксируется и все через все выражается. Сделайте это и поймите связь между r и парой h и R. Чему тогда равно отношение объемов(ведь этого от нас и просят)?

Подсказка 3

Отношение объемов равно, в силу того, что (h - r)/r = sqrt(h^2 + R^2)/r, 4 * (h / r) * (1 - 2 * (h/r)). Мы хотим максимизировать объем, значит, надо взять максимум у этой параболы(у нас же относительно h/r - выражение представляется графически параболой), а она не больше 1/2.

Показать доказательство

Обозначим радиус шара через r,  радиус основания конуса через R,  а высоту конуса — через h.  Тогда объём конуса равен

   1  2
V = 3πR ⋅h

Объём шара

   4
v = 3πr3

Отношение этих объемов равно

      3
v-= 4r2-
V   R h

Можно считать, что верхняя точка шара находится на поверхности воды, иначе воды выльется ещё меньше.

PIC

Из подобия прямоугольных треугольников AF O  и AMB  имеем

h− r  √h2-+R2
-r--= ---R----

Возведем равенство в квадрат, получим

(    )2    2   2      2
 h − 1  = h-+R2--= 1+ h2-
 r          R        R

1− 2h + h2 =1 + h2
    r  r2      R2

h2−-2rh-  h2-
  r2   = R2

      h2r2
R2 =h2-− 2rh

Значит, отношение объёмов равно

      (      )
v-= 4r3-h2−-2rh-= 4r(h−-2r)= 4(t− 2t2)= 4t(1− 2t),
V      h2r2h         h2

где t= r < 1.
   h   2  Максимум этой функции достигается в вершине параболы, то есть при t= 1
   4  и составляет

4t(1− 2t) =4⋅ 1 (1− 1) = 1
           4     2    2

Заметим, что максимум достигается при h = 4r;  при этом

       16r4
R2 = 16r2−-8r2-=2r2

l2 = h2+ R2 = 18r2 =9R2

l= 3R

Ошибка.
Попробуйте повторить позже

Задача 2#77211

В правильной четырёхугольной усечённой пирамиде ABCDA  B C D
      1 1 1 1  даны ребро AB =2  и ∠A AC = 45∘
  1 . Диагональ A C
 1  пирамиды служит осью конуса, вершина которого находится в A1  , а окружность основания касается трех граней угла C  , причем грани ABCD  в ее центре. Найдите радиус r  основания конуса.

Показать ответ и решение

PIC

Пусть точка H  — центр ABCD  , а O  — центр окружности основания конуса. AA1 = k,A1P = 2− k  . Продлим стороны AA1,BB1,CC1,DD1  до пересечения в точке P  . Введём прямоугольную декартовую систему координат, как на рисунке: H  — начало координат, ось Ox  направим вдоль HC  , Oy  вдоль HD  , Oz  вдоль HP  .

Сделаем гомотетию с центром в точке C  так, чтобы центр окружности перешёл в точку A1  . Сама же точка     (  √-         )   (  √-    )
      − 2 +kcos(45∘)   |−  2+ k√2|
A1 =|(       0     |) = |(    0   |)
         kcos(45∘)          √k2

Найдём уравнение плоскости α  , содержащую окружность конуса с центром в точке A1  . Так как       (2√2− √k)
A1C = ||   0  2||
      (  −√k  )
           2 — служит осью конуса, то в качестве вектора нормали возьмём              (    )
--   √-----  |4− k|
nα =  2A1C = ( 0  )
               −k .

Так как A  ∈α
 1  , то

     -k-  √-    k--
(4− k)(√2-−  2)− k√2 + Dα = 0

    √ -    √-    √-
Dα =  2k2 − 3 2k+ 4 2

              √-    √ -   √-
α:(4− k)x− kz+  2k2− 3 2k +4 2 =0

Найдём уравнение плоскости β = (PBC)  :

P ∈ β : (| √2C + D = 0
B ∈ β : { − √2βB + βD =0
      |( √ -  β   β
C ∈ β :   2A β + Dβ = 0

Возьмём в качестве Dβ = −√2  , тогда получим     ( Aβ)  ( 1 )
nβ = |( Bβ|) =|( −1|)
      Cβ     1

           √ -
β :x− y+ z−  2= 0

Найдём уравнение прямой l =α ∩β
1  :

{ x − y +z− √2 =0
  (4− k)x − kz+ √2k2− 3√2k+ 4√2-= 0

Сложив первое уравнение, умноженное на k  , со вторым и, выразив x  , получим         √-
x = ky− -2k2+ √2k− √2
    4    4  . Откуда можно подставить в первое уравнение и выразить z  . Тогда уравнение прямой l1  в параметрическом виде:

    (     √- 2  √-   √-
X : ||{ k4t− -24k-+  2k−  2
Y : | t(    )   √-    √-   √ -
Z : |(  1− k4 t+ -24k2−  2k+ 2 2

Её направляющий вектор     (    )
    |  k4 |
v1 = || 1 ||
    (1− k)
        4 .

Пусть T  — точка касания окружности с плоскостью β  , тогда T  лежит на прямой l1  ,      (          √-2         )
---- |      k4t− -2k4--+√k2-    |
A1T =|( (    )   √t        √ |)
        1− k4 t+ -2k42-−√3k2-+2  2 , (A1T,v1)= 0  :

  (     -       )           (           -            )
k  k   √2k2  -k-     (    k)  (   k)   √2k2  -3k-   √-
4  4t−   4 + √2- + t+  1− 4    1− 4 t+   4  −√2-+ 2 2 = 0

   √ -    √-     √ -    √-
t= --2k3-− 6-2k2+-16-2k− 16-2
          k2− 4k+ 16

Тогда      (      √-           )
           2-2k(2− k)
---  ||| √- 3k2− 4k2 +16     |||
AT = || -2(k-−26k-+-16k−-16)||
     |(   2√k2(−k24k− +6k16+8)   |)
         --k2−-4k-+16--

Уравнение плоскости γ = (ABC) :z =0  :

Найдём уравнение прямой l2 =α ∩γ  :

{
  z =0        √-     √-   √ -
  (4− k)x − kz+ 2k2− 3 2k+ 4 2= 0

Подставляя z = 0  во второе уравнение и выражая x, получим параметрическое уравнение прямой l2  :

   (  √- 2   √-   √ -
X :|||{  -2k-−-3-2k+-4-2
Y :|  t     k− 4
Z : ||( 0

Её направляющий вектор     (0)
v2 = |(1|)
     0 .

Пусть F  — точка касания окружности с плоскостью γ  , тогда F  лежит на прямой l2  ,      ( √2k2)
---- || 2kt−8||
A1F =|(  -k-|)
       −√2- , (------)
 A1F,v2 = 0⇔ t= 0

В силу симметрии картинки относительно плоскости APC  , если окружность касается плоскости P BC  , то она будет касаться и плоскости P DC  , поэтому для касания всех трёх плоскостей, содержащих граней необходимо и достаточно выполнения уравнения:

 ----   ----
|A1T|2 = |A1F|2

( √2k2)2   k2   (2√2k(2− k))2 ( √2(k3− 6k2+ 16k − 16))2 (2√2(k2− 6k +8))2
  2k-− 8  + 2-=  k2−-4k+16   +  ----k2−-4k+-16-----  +  --k2−-4k-+16--

4k2(k2-− 4k+-8)= 2(k4−-8k3+-28k2−-48k-+32)
   (2k− 8)2          k2− 4k+ 16

k2(k2− 4k +8)  2(k− 2)2(k2 − 4k+ 8)
--(k−-4)2---= ----k2−-4k-+16---

   2           2
--k--2 =-22(k−-2)--
(k − 4)  k − 4k+ 16

   -32-
k= k − 4 +12
[ k1 =4(2− √3)
  k =4(2+ √3)>2 − не подходит
  2

Тогда

         ∘--2k4----k2-  ∘ -----√--
R= |AF|=  (2k−-8)2 +-2 =2  40− 23 3

Рассмотрим △CA1F :CH = √2.

    √ -    √-   √-
F  =--2k2− 3-2-+4-2 = 8√2-− 5√6-⇒ FH = |F |= 5√6− 8√2
 x        k− 4                       x

              R   CF       ∘-2-----√--
△CA1F ∼ COH ⇒ -r = CH ⇒ r=   13(5− 2 3)
Ответ:

 ∘-2----√---
  13(5− 2 3)

Ошибка.
Попробуйте повторить позже

Задача 3#74506

В 2022 году исполняется 65 лет запуска первого искусственного спутника Земли (ИСЗ). В настоящее время для обеспечения бесперебойной работы сотовой связи, систем теле и радиовещания используются различные виды спутников, находящихся на различных орбитах, на различных высотах.

Зоной покрытия спутника назовем часть поверхности земного шара, в пределах которой обеспечивается уровень сигналов к спутнику и от него, необходимый для их приема с заданным качеством в конкретный момент времени. Как правило, эта часть поверхности ограничивается окружностью, проходящей по линии видимого горизонта. На рисунке линия проходит через точку Г:

PIC

a) Определите площадь земной поверхности (в км2  ), которая является зоной покрытия спутника, находящегося на высоте H = 500  км относительно земной поверхности, считая ее сферой радиуса R = 6400  км с центром в точке O.

б) Найдите все значения n >1,  для которых на поверхности земли можно расположить окружности C1,...,Cn,  каждая из которых внешним образом касается окружности C0,  с центром в точке A  и радиусом r< R,  каждая из них является границей зоны покрытия ИСЗ, находящегося на той же высоте H  , что и спутник с зоной покрытия C0.  Каждая из зон покрытия Ci  должна внешним образом касаться окружностей C0  и Ci+1,i=0,1,...,n− 1,  т.е. первая касается C0  и C2,  вторая — C0  и C3,  и т.д. Окружность Cn  должна касаться C0  и C1.

Источники: ШВБ-2022, 11 (см. olymp.bmstu.ru)

Показать ответ и решение

PIC

а) Зона покрытия — часть сферы, лежащая внутри конуса. S = 2πR⋅h  , где h= A3  — высота сегмента. h =R − R cosα  , здесь угол  α  — угол между радиусом ОГ и линией ОА, соединяющий центр сферы с центром окружности, которая является линией пересечения сферы и конуса.

Тогда площадь равна

                     (        )
S = 2πR2(1− cosα)= 2πR2 1−--R-- = 2πR2⋅--H-- ≈
                         R +H         R + H

       2 500-     2 10  4096-  5          5           2
≈6 ⋅6400 ⋅6900 =6400 ⋅23 ≈ 23 ⋅10 ≈178,09⋅10 = 17809000 км

б) Пусть О — центр сферы, В — точка касания первой и второй окружности, А и A1  их центры этих окружностей, З,З1,З2  — точки пересечения радиусов R  со сферой. Обозначим α  — угол между ОЗ и ОВ. Тогда       r-
sinα = R,ЗЗ1 = 2r.

PIC

В правильной пирамиде ОЗЗ1З2  плоские углы при вершине равны 2α,  двугранный угол при ребре О3 равен 360∕n.  Опустив перпендикуляры из точек З1  и З2  на ребро О3 в точку H, треугольники ОЗ,З1  и ОЗЗ2  равны (по трем сторонам), т.к. две стороны равны R,  а третья 2r.

PIC

                                ∘ --------
НЗ1 =Н З2 = 2rcosα= 2r∘1−-sin2α =2r 1− ( r)2
                                      R

                                 ∘----r2-
⇒ 2r=ЗЗ1 =ЗЗ2 =2⋅Н З1⋅sin(180∕n)= 4r 1− R2-sin(180∕n)

 ∘ ------                        ( ∘ -----)
      r2                                r2
2  1− R2 sin(180∕n)= 1⇒ sin(180∕n)= 1∕(2 1− R2) > 1∕2⇒  n< 6
Ответ:

а) 17809000

б) 2,3,4,5

Ошибка.
Попробуйте повторить позже

Задача 4#70490

Угол при вершине в осевом сечении конуса равен 60∘ . Снаружи этого конуса расположены 11 шаров радиуса 3, каждый из которых касается двух соседних шаров, боковой поверхности конуса и плоскости его основания. Найдите радиус основания конуса.

Источники: Ломоносов-2022, 11.4 (см. olymp.msu.ru)

Подсказки к задаче

Подсказка 1

Давайте сначала рассмотрим расположение любого шара и конуса в плоскости, перпендикулярной рисунку.

Подсказка 2

У нас есть треугольник, которого касается окружность известного радиуса, вписанная во внешний угол при основании треугольника. Счёт за Вами... Напоминаем, окружность, вписанная в угол, лежит на его биссектрисе

Подсказка 3

Теперь давайте поймем как расположены все шары снаружи. Они касаются друг друга, поверхности конуса и плоскости его основания, причем все расположены на одинаковом расстоянии от центра основания конуса!

Подсказка 4

То есть точки касания шаров с плоскостью основания конуса являются вершина правильного 11-угольника со стороной, равной удвоенному радиусу шаров(так как они касаются друг друга и длина = 2 радиуса)...

Подсказка 5

Теперь нам известны расстояние от центра основания до точки касания шаров с плоскостью основания(радиус 11-угольника) и расстояние от этой точки касания до ближайшей вершины треугольника в плоскости рисунка, тогда искомый радиус основания = радиус 11-угольника - последнее расстояние

Показать ответ и решение

PIC

Пусть O  — центр окружности основания конуса, радиуса R,Q1  - центр одного из шаров радиуса 3,H1  — точка касания этого шара с плоскостью основания, H2  — точка касания соседнего шара с плоскостью основания конуса. Значит, из треугольника AQ1H1  можем получить

AH1 =--(-Q1H1-∘) = 3√--=√3
     tg 45∘+ 302--    3

PIC

Так как каждый шар касается двух соседних, то точки касания этих шаров с плоскостью основания конуса расположены в вершинах правильного 11-угольника вписанного в окружность с центром в точке O,  радиуса OH1  и стороной, равной 2⋅3= 6.  Поэтому

            180∘-
Q1H =OH1 sin 11 , где OH1 = R+ AH1

     Q1H           3     √-
R = sin180∘-− AH1 = sin-180∘− 3
       11            11
Ответ:

---3--− √3
sin 18101∘

Ошибка.
Попробуйте повторить позже

Задача 5#33366

Рассмотрим всевозможные тетраэдры ABCD  , в которых AB = 2,AC =CB = 5,AD  =  DB  =6  . Каждый такой тетраэдр впишем в цилиндр так, чтобы все вершины оказались на его боковой поверхности, причём ребро CD  было параллельно оси цилиндра. Выберем тетраэдр, для которого радиус цилиндра - наименьший из полученных. Какие значения может принимать длина CD  в таком тетраэдре?

Показать ответ и решение

PIC

Пусть E  - середина AB.CE  и DE  - медианы равнобедренных треугольников ABC  и ABD  , a значит, биссектрисы и высоты. То есть AB ⊥ CE,AB ⊥ DE  . Значит, отрезок AB  перпендикулярен плоскости CDE  , следовательно, AB ⊥ CD  . Таким образом, AB  лежит в плоскости, перпендикулярной оси цилиндра (обозначим эту плоскость через α  ). Сечение цилиндра этой плоскостью - окружность, а  AB  является хордой этой окружности. Тогда радиус цилиндра минимален, если AB − диаметр. Отметим, что это возможно в силу того, что отрезки DE  и CE  длиннее, чем 12AB = 1  . Действительно, из треугольников ACE  и ADE  следует, что CE = √52−-12 = 2√6,DE = √62−-12 = √35  .

Рассмотрим тетраэдр, в котором AB  является диаметром цилиндра. Возможны 2 случая: точки C  и D  лежат по одну (этот случай представлен выше) или по разные стороны плоскости α  .

Пусть H  - проекция точек C  и D  на плоскость α  . Угол ∠AHB  =90∘ , так как он вписан в окружность и опирается на её диаметр. AH = BH  в силу равенства треугольников ACH  и BCH  . Тогда AH =  BH = √2  . По теореме Пифагора в прямоугольных треугольниках AHC  и DHC  соответственно: CH  =  √25− 2-=√23,DH = √36−-2= √34  .

Тогда, если точки C  и D  лежат по одну сторону от плоскости α  , то CD =DH  − CH = √34− √23  . Если точки C  и D  лежат по разные стороны от плоскости α  , то CD = DH + CH = √34+√23-  .

Ответ:

 √34-±√23

Критерии оценки

Доказано, что 𝐴𝐵 – диаметр цилиндра наименьшего радиуса – 2 балла; если при этом не проверено, что точки 𝐶 и 𝐷 могут лежать на боковой поверхности такого цилиндра (например, можно доказать, что треугольники 𝐴𝐵𝐶 и 𝐴𝐵𝐷 остроугольные; можно сделать, как в решении), то 1 балл вместо 2;

найдены оба значения 𝐶𝐷 – 3 балла;

найдено только одно значение 𝐶𝐷 – 1 балл вместо 3.

Ошибка.
Попробуйте повторить позже

Задача 6#33674

На рёбрах AC,BC, BS,AS  правильной треугольной пирамиды SABC  с вершиной S  выбраны точки K,L,M,N  соответственно. Известно, что точки K,L,M,N  лежат в одной плоскости, причём KL = MN = 2,KN = LM = 18  . В четырёхугольнике KLMN  расположены две окружности Ω1  и Ω2  , причём окружность Ω1  касается сторон KN,KL  и LM  , а окружность Ω2  касается сторон KN,LM  и MN.  Прямые круговые конусы ℱ1  и ℱ2  с основаниями Ω1  и Ω2  соответственно расположены внутри данной пирамиды, причём вершина P  конуса ℱ1  лежит на ребре AB  , а вершина Q  конуса ℱ2  лежит на ребре CS  .

а) Найдите ∠SAB

б) Найдите длину отрезка CQ  .

Источники: Физтех-2019, 11.7, (см. olymp.mipt.ru)

Показать ответ и решение

PIC

Противоположные стороны четырёхугольника KLMN  попарно равны, так что он параллелограмм. Поскольку плоскость (KLMN  )  пересекает плоскости (ABC )  и (ABS )  по параллельным прямым KL  и MN  , эти прямые параллельны прямой пересечения этих плоскостей - то есть AB  . Аналогично, NK ∥LM ∥SC  . В правильной треугольной пирамиде скрещивающиеся рёбра перпендикулярны друг другу, поэтому SC ⊥AB  , а KLMN  − прямоугольник. Следовательно, радиусы окружностей Ω1  и Ω2  равны 1  .

Отсюда также следует, что прямоугольник KLMN  симметричен относительно плоскости α  , содержащей ребро SC  и середину AB  . Тогда и конусы ℱ1  и ℱ2  также симметричны относительно этой плоскости. Поэтому P  - середина AB  .

Обозначим через X  и Y  середины сторон KL  и MN  соответственно, а через O1  и O2− центры окружностей Ω1  и Ω2  соответственно; эти четыре точки лежат на оси симметрии прямоугольника KLMN  , параллельной KN  , а значит - в плоскости α  . Более того, XY ∥SC  , то есть треугольники PCS  и P XY  подобны.

Пусть AB = BC = CA = 2a,SA =SB = SC =ℓ,ν = a∕ℓ  . Тогда CP = a√3,SP = √ℓ2−-a2  . Поскольку XY = KN = 18  , из подобия получаем XP-= XY-
CP   CS  , т.е. X√P-= 18,XP = 18√3a-= 18ν√3-
a3   ℓ        ℓ  . Аналогично, Y-P= XY-,YP-= 18,YP = 18√-ℓ2−a2= 18√1−-ν2
 SP   CS  SP   ℓ         ℓ  . C другой стороны, так как конус ℱ −
  1 прямой, имеем PO  ⊥XY
  1  , причём XO  = 1KL = 1,Y O = XY − XO = 17
   1  2         1         1  . Отсюда 172− 12 =O Y 2− O X2 = (O Y2+ O P2)− (O X2 + O P2)=P Y2− PX2 =182(1− ν2− 3ν2)
          1     1      1     1       1     1 , или 16⋅18 =182(1− 4ν2) , откуда     1
ν = 6  . Значит,            AP-              1
∠SAB = arccosAS = arccosν = arccos6  .

Итак, ℓ= 6a  , и из подобия имеем

 2   KL   CX      XP      XY      18     3
2a = AB-= CP-= 1− CP-= 1− CS- =1− -ℓ =1− a,

откуда a= 4  и ℓ= 24  . Пусть PO1  пересекает SC  в точке H  . Тогда PH − высота треугольника SCP  , причём (поскольку XY ∥CS  )      XO
CCHS-= XY1-= 118-  . Значит, CH  = S1C8 = 43  . Поскольку O2Q⊥ XY,H1O2Q  - прямоугольник, так что HQ = O1O2 = 16  . Отсюда CQ = CH + HQ = 523-  .

Ответ:

а) ∠SAB = arccos1;
            6  б) CQ = 52-
     3

Ошибка.
Попробуйте повторить позже

Задача 7#39887

На плоскости основания конуса с высотой, равной радиусу основания, дана точка (вне конуса), удалённая от окружности основания на расстояние, равное двум радиусам основания. Найдите угол между касательными плоскостями к боковой поверхности конуса, проходящими через данную точку.

Источники: ПВГ-2016, 11.4 (см. pvg.mk.ru)

Показать ответ и решение

PIC

Пусть центр основания радиуса r  — точка O  , точка рядом A  , а S  — вершина конуса. Пусть также AO  пересекает окружность в E,F, AE < AF  . Касательные плоскости содержат касательные из A  к окружности, пусть это AB  и AC  . Легко видеть, что SAB  и SAC  и есть искомые плоскости, проведём в этих треугольниках высоты к AS  , которые в силу симметрии упадут в одну точку T  . Тогда наша задача сводится к поиску ∠BT C =2∠CT H = 2arctg CTHH  .

Итак, будем искать отрезки CH  и TH  . По теореме об отрезках касательной и секущей

                                                     √-      √ -
AC2 = AE ⋅AF = 8r2  =⇒  AC = 2√2r  =⇒  CH  = AC-⋅CO-= 2-2r⋅r = 2-2r
                                             AO       3r      3

Здесь мы просто посчитали площадь прямоугольного треугольника двумя способами. Теперь заметим, что AS ⊥BT C  , поскольку две прямые BT, TC  ей перпендикулярны, откуда TH ⊥ AS  , то есть △AT H ∼△AOS  , как прямоугольные с общим углом. Имеем

                √---------   ∘---8
TH- = TH-= AH-= √AC2-−-CH2-= -8√-−9-= -8√--
 r    OS   AS     AO2+ OS2     10    3 10

В итоге ∠BTC = 2arctg CH-= 2arctg √5
            TH        2  .

Ответ:

 2arctg √5
      2

Ошибка.
Попробуйте повторить позже

Задача 8#64569

В конус вписан цилиндр объема 9. Плоскость верхнего основания этого цилиндра отсекает от исходного конуса усеченный конус объемом 63. Найдите объем исходного конуса.

Источники: ОММО-2015, номер 10, (см.olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Запишем известные нам объёмы! В работе с усечённым конусом нам поможет формула, выражающая его объём через высоту и радиусы оснований. А чего нам не хватает для объёма искомого конуса?

Подсказка 2

Нам не хватает его высоты — она пока не фигурирует ни в одной из известных фигур. Зато у нас в обоих данных объёмах задействована высота усечённого конуса, которая дальше нам не очень нужна. Так выразим её из объёма цилиндра и подставим в объём усечённого конуса! Поработав с квадратным уравнением, мы отыщем отношение радиусов верхнего и нижнего оснований.

Подсказка 3

Отыскать высоту исходного конуса нам помогут подобные треугольники: рассмотрите осевое сечение этого конуса. Отношение радиусов поможет нам связать высоты исходного и усечённого конусов. Осталось немного повозиться с формулами, подставляя известные отношения, и задача убита!

Показать ответ и решение

PIC

Пусть высота и радиус исходного конуса равны H  и R  , а высота и радиус цилиндра равны h  и r  . Воспользуемся формулой для объема усеченного конуса:   (          )
13π R2+ Rr+ r2 h= 63  . Также мы знаем, что πr2h= 9  . Поделив соответствующие части равенств получаем

(  )  (  )
 R- 2+  R- + 1= 63⋅3= 21
 r      r        9

Решая квадратное уравнение, получаем корни 4  и − 5,  геометрический смысл имеет только положительный. R∕r= 4,H-−h= 4, h-= 3
       H      H  4  , откуда получаем для исходного конуса:

   1       1 (   )(R )2 H  1      4
V = 3πR2H = 3 πr2h r-  h-= 3 ⋅9 ⋅42⋅3 = 64
Ответ: 64

Ошибка.
Попробуйте повторить позже

Задача 9#63895

В правильную треугольную призму ABCA  B C
     1 1 1  вписан шар радиуса √2  . Найдите площадь боковой поверхности вписанного в шар прямого кругового цилиндра, основание которого лежит в плоскости, проходящей через точку A  и середины рёбер BB1  и CC1.

Источники: Ломоносов-2014, 11.7 (см. olymp.msu.ru)

Показать ответ и решение

Обозначим через r  радиус шара, а через D,D ,M
   1  и N  — середины рёбер BC,B C ,BB
     11    1  и CC
   1  соответственно. Плоскость AA  D
   1 1  есть центральное сечение шара. Пусть h  — высота цилиндра, тогда радиус его основания равен     ∘-2--h2
R =  r − 4  . Пусть P  — точка пересечения отрезков DD1  и MN  . Справедливы соотношения OP = r,P D= r,AD =3r  , где O− центр шара. Если O1  — проекция точки O  на основание цилиндра, то из подобия прямоугольных треугольников APD  и OO1P  получаем

OO1   PD    OO1      r       1
OP--= AP-⇔  -r--= √9r2-+r2 = √10-.

Тогда        √--            √--
OO1 = r1100,h =2 ⋅OO1 = r510.  Значит,      √--
R= 3r1010  . Площадь боковой поверхности                2
Sбок. =2πRh = 6πr5-.

Ответ:

 12π
 5

Ошибка.
Попробуйте повторить позже

Задача 10#64565

Два равных конуса расположены так, что осью каждого из них является образующая другого. Углы при вершинах в осевых сечениях этих конусов равны по   ∘
90 . Найдите угол между двумя образующими, по которым пересекаются эти конусы.

Источники: ПВГ-2013 (см. pvg.mk.ru)

Показать ответ и решение

Пусть S  — общая вершина рассматриваемых конусов, SA
  1  и SA
  2  — их оси. Обозначим через SB  и SC  их общие образующие и через α  искомый угол BSC  . Описанная в задаче конфигурация имеет две плоскости симметрии: одна — SA1A2  — содержит оси конусов, другая — SBC  — содержит из образующие. Тогда эти плоскости перпендикулярны. Пусть SO  прямая их пересечения.

Обозначим через ϕ  угол в осевом сечении каждого из конусов. Так как SA@  является образующей для конуса с осью SA1  и наоборот, то                 ϕ
∠A2SO = ∠OSA1 = 4  . Кроме тогда,                        ϕ
∠A2SB = ∠A2SC = ∠A1SC = 2  и               α
∠OSB =∠OSC  = 2  .

Будем считать, что точки A1, A2, B, C, O  лежат в некоторой плоскости, перпендикулярной прямой SO  и расположенной на расстояние h  от вершины S  . Тогда из пирамиды SOA1C  , в которой все плоские углы при вершине O  прямые, имеем

        h
SA1 =---(ϕ)
     cos 4

         (ϕ)
OA1 = htg 4

SC = --h(α-)
     cos 2

        (α)
OC = gtg  2

Тогда по теореме косинусов для треугольников OA1C  и SA1C

    2  2  2(ϕ )   2 2(α )
A1C  =h tg  4  + h tg  -2

         2        2           2       ( )
A1C2 =--h(ϕ)-+ --h2(α)-−---(ϕ2)h--(-)cos ϕ
      cos2 4    cos  2   cos 4 cos α2     2

Приравняем эти 2 выражения и домножим на квадраты косинусов.

  h2       h2             ( ϕ)      ( α)
--2(ϕ)-+ cos2(α) − 2h2 = h2 tg2 4 + h2tg2 2-=
cos  4        2

    h2       h2         2h2       ( ϕ)
= cos2(ϕ)-+ cos2(α) − cos(ϕ)cos(α)cos 2
      4        2       4     2

   (ϕ)     (ϕ )  ( α)
cos 2  =cos 4  cos 2

Мы знаем, что ϕ= 90∘ , поэтому    ( )  ∘-----
cos α2 =   2+2√2-.

Ответ:

 2arccos∘-2√--
        2+  2

Рулетка
Вы можете получить скидку в рулетке!