Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)
Стереометрия на ОММО
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79606

Ортогональной проекцией правильной треугольной пирамиды на некоторую плоскость является параллелограмм с острым углом 60∘ . Найдите объём пирамиды, если площадь её боковой поверхности равна 54.

Источники: ОММО - 2024, задача 8 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Чтобы нормально работать с картинкой, рассмотрим две пары скрещивающихся рёбер пирамиды (например, AB, CD, BC, AD). Ведь их достаточно для построения проекции. Пирамида правильная, значит, на этих рёбрах удобно отметить их середины (например, точки M, N, Q, P соответственно). Ведь отрезки MN и PQ являются перпендикулярами к этим рёбрам. Но, кажется, этого мало, ведь надо понять, какие свойства имеют их проекции. Попробуйте выяснить, как связаны эти отрезки и их проекции, основываясь на том, что ортогональная проекция пирамиды - параллелограмм.

Подсказка 2

В силу того, что проекцией пирамиды является параллелограмм, эти отрезки параллельны плоскости проекции. Тогда проекции MN и PQ параллельны самим отрезкам, равны им и перпендикулярны сторонам ромба. Также, так как пирамида правильная, MN и PQ равны, а значит, и их проекции тоже. Что тогда мы можем сказать про этот параллелограмм?

Подсказка 3

Верно! Это же ромб! Ведь в нём высоты, проведённые к смежным сторонам, равны. Тогда, если введём угол между ребром основания пирамиды и плоскостью проекции и длину стороны основания и боковой стороны трапеции (например, через a и b), то сможем выразить стороны ромба через a, b и этот угол и получить уравнение, ведь эти стороны равны.

Подсказка 4

Теперь мы получили, что тангенс угла между ребром основания пирамиды и плоскостью проекции равен a/b. Отлично! Мы можем выразить и синус, и косинус этого угла через a/b, а значит, и сторону ромба мы можем выразить через a и b (для удобства можно заменить a/b на новую переменную). Но мы ещё никак не воспользовались тем условием, что угол ромба равен 60 градусам. Это нужно исправить, например, записав уравнение на синус этого угла, выразив его как отношение высоты ромба на его сторону. Если мы ещё и выразим высоту через a и b, то получится записать уравнение на a и b.

Подсказка 5

Мы ведь знаем, что проекция MN - это высота ромба. Тогда так как проекция равна MN, то и высота равна этому отрезку. А вот его уже легче искать. Это можно сделать, выразив площадь треугольника MDC двумя способами.

Подсказка 6

Подставив MN в уравнение, мы получили, что (a/b)^2 = 2. Осталось воспользоваться последним условием задачи про площадь боковой поверхности. Выразив её через a и b, мы получаем уравнение, через которое находим a и b. Дело за малым, осталось лишь посчитать объём. И победа!

Показать ответ и решение

Пусть сторона основания пирамиды DABC  с вершиной D  равна a  , а боковое ребро равно b  . Для построения проекции достаточно рассмотреть две пары скрещивающихся ребер, например, AB, CD,BC  и AD  , проекции которых являются сторонами параллелограмма A1B1C1D1.

PIC

Пусть MN  — общий перпендикуляр пары рёбер BC  и AD  , а PQ  — общий перпендикуляр скрещивающихся рёбер BC  и AD  . Плоскость проекции Ω  параллельна как MN  , так и P Q  , поскольку ортогональной проекцией пирамиды является параллелограмм. Отрезки MN  и PQ  проектируются на плоскость Ω  без изменения длины в высоты параллелограмма M1N1  и P1Q1  , так как ABB1A1  и DCC1D1  обе перпендикулярны Ω  и будут параллельны друг другу, т.к. A1B1C1D1  — параллелограмм. То есть MN  не просто общий перпендикуляр AB  и CD  , но и общий перпендикуляр двух вышеописанных плоскостей. А значит, ещё это и общий перпендикуляр для A1B1  и C1D1.

Поскольку пирамида правильная, MN  = PQ  . Следовательно, M1N1 = P1Q1.

В параллелограмме A1B1C1D1  высоты, проведённые к смежным сторонам, равны. Значит, параллелограмм является ромбом.

Пусть ребро AB  наклонено к плоскости Ω  под углом α  , тогда ребро CD  , которое перпендикулярно AB  , наклонено под углом 90∘− α.  Отсюда acosα= bsinα.

PIC

Обозначим ab = λ  . Тогда tgα= λ,A1B1 = acosα = √1a+λ2  .

Найдём расстояние между скрещивающимися рёбрами правильной треугольной пирамиды как высоту сечения DMC  :

                  ∘ ------
              a√3-   2  a2
MC ⋅H = b⋅MN,  2  ⋅ b − 3 = b⋅MN

откуда

        ∘------    ∘-----
MN  = a2b 3b2− a2 = a2 3− λ2

Тогда синус острого угла пирамиды равен sinφ = MA11ND11 = AM1NB1  . Подставляя найденные выражения и данное в условии значение φ =60∘ , получим  -
√32 = 12√3-−-λ2√1-+λ2-  , откуда λ= 0  (что невозможно) или λ2 =2.

Площадь боковой поверхности пирамиды равна

     ∘ ----2-    2 √----2
S = 3a b2− a-= 3a-⋅-4−-λ-
    2      4    4    λ

Подставив S = 54  и λ= √2  , найдём

a2 =72,b2 = a2= 36
          λ2

Объём правильной пирамиды равен

    a2∘ --2--2   √-------
V = 12  3b − a = 6 108− 72=36
Ответ: 36

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!