Тема ОММО (Объединённая Межвузовская Математическая Олимпиада)
Стереометрия на ОММО
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#79606

Ортогональной проекцией правильной треугольной пирамиды на некоторую плоскость является параллелограмм с острым углом 60∘ . Найдите объём пирамиды, если площадь её боковой поверхности равна 54.

Источники: ОММО - 2024, задача 8 (см. olympiads.mccme.ru)

Показать ответ и решение

Пусть сторона основания пирамиды DABC  с вершиной D  равна a  , а боковое ребро равно b  . Для построения проекции достаточно рассмотреть две пары скрещивающихся ребер, например AB, CD,BC  и AD  , проекции которых являются сторонами параллелограмма A1B1C1D1.

PIC

Пусть MN  — общий перпендикуляр пары рёбер BC  и AD  , а PQ  — общий перпендикуляр скрещивающихся рёбер BC  и AD  . Плоскость проекции Ω  параллельна как MN  , так и P Q  , поскольку ортогональной проекцией пирамиды является параллелограмм. Отрезки MN  и PQ  проектируются на плоскость Ω  без изменения длины в высоты параллелограмма M1N1  и P1Q1  , так как ABB1A1  и DCC1D1  обе перпендикулярны Ω  и будут параллельны друг другу, т.к. A1B1C1D1  — параллелограмм. То есть MN  не просто общий перпендикуляр AB  и CD  , но и общий перпендикуляр двух вышеописанных плоскостей. А значит ещё это и общий перпендикуляр для A1B1  и C1D1.

Поскольку пирамида правильная, MN  = PQ  . Следовательно, M1N1 = P1Q1.

PIC

В параллелограмме A1B1C1D1  высоты, проведённые к смежным сторонам, равны — значит, параллелограмм является ромбом.

Пусть ребро AB  наклонено к плоскости Ω  под углом α  , тогда ребро CD  , которое перпендикулярно AB  , наклонено под углом 90∘− α  . Отсюда acosα= bsinα.

Обозначим ab = λ  . Тогда tgα= λ,A1B1 = acosα = √1a+λ2  .

Найдём расстояние между скрещивающимися рёбрами правильной треугольной пирамиды как высоту сечения DMC  :

                  ∘ ------
              a√3-   2  a2
MC ⋅H = b⋅MN,  2  ⋅ b − 3 = b⋅MN

откуда

        ∘------    ∘-----
MN  = a2b 3b2− a2 = a2 3− λ2

Тогда синус острого угла пирамиды равен sinφ = MA11ND11 = AM1NB1  . Подставляя найденные выражения и данное в условии значение φ =60∘ , получим  -
√32 = 12√3-−-λ2√1-+λ2-  , откуда λ= 0  (что невозможно) или λ2 =2.

Площадь боковой поверхности пирамиды равна

     ∘ ----2-    2 √----2
S = 3a b2− a-= 3a-⋅-4−-λ-
    2      4    4    λ

Подставив S = 54  и λ= √2  , найдём

a2 =72,b2 = a2= 36
          λ2

Объём правильной пирамиды равен

    a2∘ --2--2   √-------
V = 12  3b − a = 6 108− 72=36
Ответ: 36

Ошибка.
Попробуйте повторить позже

Задача 2#64569

В конус вписан цилиндр объема 9. Плоскость верхнего основания этого цилиндра отсекает от исходного конуса усеченный конус объемом 63. Найдите объем исходного конуса.

Источники: ОММО-2015, номер 10, (см.olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Запишем известные нам объёмы! В работе с усечённым конусом нам поможет формула, выражающая его объём через высоту и радиусы оснований. А чего нам не хватает для объёма искомого конуса?

Подсказка 2

Нам не хватает его высоты — она пока не фигурирует ни в одной из известных фигур. Зато у нас в обоих данных объёмах задействована высота усечённого конуса, которая дальше нам не очень нужна. Так выразим её из объёма цилиндра и подставим в объём усечённого конуса! Поработав с квадратным уравнением, мы отыщем отношение радиусов верхнего и нижнего оснований.

Подсказка 3

Отыскать высоту исходного конуса нам помогут подобные треугольники: рассмотрите осевое сечение этого конуса. Отношение радиусов поможет нам связать высоты исходного и усечённого конусов. Осталось немного повозиться с формулами, подставляя известные отношения, и задача убита!

Показать ответ и решение

PIC

Пусть высота и радиус исходного конуса равны H  и R  , а высота и радиус цилиндра равны h  и r  . Воспользуемся формулой для объема усеченного конуса:   (          )
13π R2+ Rr+ r2 h= 63  . Также мы знаем, что πr2h= 9  . Поделив соответствующие части равенств получаем

(  )  (  )
 R- 2+  R- + 1= 63⋅3= 21
 r      r        9

Решая квадратное уравнение, получаем корни 4  и − 5,  геометрический смысл имеет только положительный. R∕r= 4,H-−h= 4, h-= 3
       H      H  4  , откуда получаем для исходного конуса:

   1       1 (   )(R )2 H  1      4
V = 3πR2H = 3 πr2h r-  h-= 3 ⋅9 ⋅42⋅3 = 64
Ответ: 64

Ошибка.
Попробуйте повторить позже

Задача 3#64568

В прямоугольном параллелепипеде ABCDA  B C D
      1 1 1 1  с рёбрами AB =3,AD = 4  и AA = 5
  1  проведены два сечения – плоскостью, проходящей через диагональ A1C  , и плоскостью, проходящей через диагональ B1D  . Найдите наибольшее возможное значение суммы площадей поверхностей многогранников, на которые эти сечения разбивают данный параллелепипед.

Источники: ОММО-2014, номер 10, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Нарисуйте картинку и попробуйте понять: что точно, вне зависимости от положения сечений будет содержаться в искомой сумме? Можем ли мы как-то избежать попадания в эту сумму какой-то части исходного параллелепипеда? А сколько раз туда попадут части наших сечений?

Подсказка 2

Итак, получается, что как бы ни были расположены сечения, их площади дважды войдут в искомые площади поверхностей. Значит надо эти площади максимизировать!

Подсказка 3

Какой фигурой будет являться каждое сечение? Как площади сечений связаны с длинами диагоналей? Исследуйте, где должны быть расположены вершины параллелограмма-сечения, чтобы расстояние до диагонали параллелепипеда было наибольшим.

Подсказка 4

Осталось лишь посчитать все нужные длины, призвав на помощь теорему Пифагора. Будьте внимательны к арифметике и задача окажется убита!

Показать ответ и решение

Сумма площадей поверхностей многогранников, на которые разбивается параллелепипед сечениями, равна сумме площади поверхности параллелепипеда и площадей внутренних поверхностей. Сумма площадей внутренних поверхностей равна удвоенной сумме площадей сечений.

Найдем наибольшую возможную площадь сечения, проходящего через диагональ XY  произвольного параллелепипеда с ребрами a≤ b≤ c  . Сечением является параллелограмм ZXT Y  , вершины которого лежат на противоположных рёбрах параллелепипеда. Площадь параллелограмма равна произведению длины диагонали XY  на расстояние от точки Z  до XY  .

PIC

Рассмотрим проекцию параллелепипеда на плоскость, перпендикулярную диагонали XY  . На рисунке видно, что расстояние от точки Z  ломаной ABC  до точки Y  , то есть до диагонали XY  , наибольшее, если Z  совпадает с одной из вершин A,B  или C  .

PIC

Значит, сечение проходит через одно из ребер параллелепипеда. Таким образом, наибольшую площадь имеет одно из диагональных сечений. Все эти сечения являются прямоугольниками. Найдем наибольшую из их площадей

     ∘-----      ∘------      ∘ ------
S1 = a b2+ c2,S2 = b a2+ c2 и S3 =c b2+ a2.

Из условия a ≤b ≤c  следует, что,  22   22   2 2  2 2
a b +a c ≤c b +a c  , и  22   22   22   22
a b+ c b ≤c b+ a c  . Поэтому S1 ≤ S3  и S2 ≤ S3  . Значит, наибольшую площадь имеет сечение, проходящее через наибольшее ребро. По условию наибольшую длину имеет ребро AA1  , значит, наибольшую площадь  √-2---2
5 4 + 3 = 25  имеют сечения AA1C1C  и BB1D1D  .

PIC

Сумма площадей поверхностей многогранников, на которые разбивается параллелепипед этими сечениями (см. рисунок), равна

2(AA1⋅AB + AA1⋅AD +AB ⋅AD )+4 ⋅25= 194.
Ответ: 194

Ошибка.
Попробуйте повторить позже

Задача 4#38690

Единичный куб ABCDA   B C D
       1 1 1 1  повёрнут на 90∘ вокруг прямой, проходящей через середины противоположных рёбер AD  и B C
  1 1  . Найдите объём общей части исходного куба и повёрнутого.

Источники: ОММО-2013, номер 10, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Итак, для начала надо внимательно разобраться с получающейся фигурой. Удобно начать построение с поворота рёбер AD и B₁C₁. Похожа ли общая часть кубов на какую-то известную нам фигуру? Если нет, то подумайте как можно её разбить на составляющие.

Подсказка 2

Работать с такого типа фигурой можно через сумму объёмов составляющих её частей. Или же через разность: вычитая удобные части из фигуры, содержащей искомую. Рассмотрим способ через сумму — наш многогранник удачно разбивается на параллелепипед и две правильные четырёхугольные пирамиды.

Подсказка 3

Найти все нужные длины нам поможет Пифагор: рассмотрите одну из граней исходного куба и возвышающуюся над ней часть нового куба. Аккуратный счёт поможет вам узнать, где пересекутся рёбра нового и исходного кубов.

Подсказка 4

Также, с помощью Пифагора мы сможем отыскать и все рёбра искомого многогранника. Осталось лишь отыскать объёмы всех составных частей и сложить их. Задача убита!

Показать ответ и решение

PIC

Пусть S  и S1  — середины AD  и B1C1  , а куб после поворота переходит в A′B′C ′D′A′1B′1C′1D′1  . Общая часть будет объединением прямоугольного параллелепипеда EFGHE1F1G1H1  и двух симметричных правильных четырёхугольных пирамид SEFGH  и S1E1F1G1H1  , найдём их объёмы.

PIC

Сторона основания пирамиды равна стороне квадрата, то есть единице. Далее оба квадрата симметричны относительно AB1C1D  , потому             E1√F1  √1-
E1B1 = F1B1 = 2 =   2  . Из △E1B1S1  имеем       ∘-1--1  √3
E1S1 =  2 + 4 = 2  — боковая сторона пирамиды. Отсюда легко найти её высоту, которая равна 1
2  , тогда объём пирамиды равен 1    1  1
3 ⋅1 ⋅2 = 6  .

PIC

Поскольку A1E1 = A1E = 1− 1√2  (EE1 ⊥E1F1  , которая по доказанному образует углы 45∘ со сторонами), то EE1 = √2 − 1  , EF = EH = 1  , как стороны квадрата, отсюда объём параллелепипеда √2 − 1  .

В итоге объём сечения 16 ⋅2+ √2 − 1= √2-− 23  .

Ответ:

 √2-− 2
     3

Рулетка
Вы можете получить скидку в рулетке!