Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела изумруд
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76459

Пусть p ,p,...,p ,...
 1 2     n  — множество всех простых чисел, расположенных в некотором порядке. Может ли случиться так, что для всех натуральных i  число pipi+1−p2i+2-
 pi+pi+1  является натуральным?

Источники: Изумруд-2022, 11.5 (см. izumrud.urfu.ru)

Подсказки к задаче

Подсказка 1

В задачах на делимость (а это по сути она и есть) часто выгодно рассмотреть какое-то красивое число. А поскольку у нас в задаче часто фигурируют простые, рассмотрим p_m = 2. Что тогда хорошего можно сказать про дробь?

Подсказка 2

Тогда, можно сказать, что число меньше 2, а значит равно 1, а значит, p_(m + 1) = p^2_(m + 2) + 2. А мы как-то использовали m? Может ли m быть сильно большим? Как можно ограничить m зная симметричность p_(i + 1) и p_i в нашем числе?

Подсказка 3

Если m > 1, то можно взять рассмотреть (2p_(m - 1) - p^2_(m + 1))/(2 + p_(m - 1)). Тогда, p_(m - 1) = p^2_(m + 1) + 2 = (p^2_(m + 2) + 2)^2 + 2. По какому модулю теперь удобно посмотреть, при наличии тут множественных квадратов?

Подсказка 4

Конечно, mod 3. Ведь тогда, если p_(m + 2) != 3, то p_(m + 1) кратен 3, а значит равен 3. Но тогда p_(m + 2) = 1. А если же p_(m + 2) = 3, то p_(m - 1) = 123. Значит, пришли к общему противоречию с тем, что m > 1, значит, m = 1. При этом, поняли, что mod 3 в этой задаче, как будто, играет важную роль. Давайте тогда , если уж все таки хотим делимость, рассмотрим такие p_k и p_k + 1, что их сумма кратна 3, и при этом они оба отличны от 3. Что это значит тогда для этих двух чисел? А для дроби?

Подсказка 5

Это значит, что остатки mod 3 у этих

Подсказка 6

Это числа, которые сравнимы с 2 mod 3, а после идет сама тройка. Но тогда, если после тройки стоит число = 2 mod 3, то после него идут только числа = 2 mod 3, а значит пришли к противоречию, так как числа = 1 mod 3 существуют. А значит, после 3 идут только числа = 1 mod 3, но тогда перед 3 стоит конечное число простых = 2 mod 3. А то, что таких бесконечно - остаётся вам в качестве упражнения! :)))

Показать ответ и решение

Предположим, что такое могло случиться. Тогда существует натуральное m  такое, что p  = 2.
 m  Значит число

2pm+1 − p2m+2     p2m+2 + 4
--2+pm+1---= 2− 2+pm+1-< 2

является натуральным, откуда

p2m+2-+4 =1 и pm+1 =p2  +2
2+ pm+1            m+2

Случай m> 1  невозможен, так как тогда число

2pm− 1− p2       p2   + 4
--2+pm−m1+1-= 2− m2++1pm-−1 < 2

также является натуральным, откуда

p2m+1-+4 =1 и p   =p2   +2= (p2  + 2)2 +2
2+ pm−1      m−1   m+1       m+2

Теперь если pm+2 = 3,  то pm−1 =123,  что невозможно. Если же pm+2 ⁄= 3,  то

p2   ≡ 1 и p  =p2   +2 ... 3
 m+2 3    m+1   m+2

Значит,

pm+1 = 3, pm+2 = 1

Это невозможно. Следовательно, m =1.

Предположим теперь, что нашлись числа pk  и pk+1  с различными ненулевыми остатками при делении на 3, то есть

       ..
pk+pk+1. 3

Поскольку число

pkpk+1 − p2
--p-+-p-k+2
   k  k+1

является натуральным, то

           .
pkpk+1 − p2k+2.. 3

Но тогда

p2k+2 ≡3 pkpk+1 ≡3 2

Это невозможно, так как квадраты имеют остатки 0 или 1 при делении на 3. В итоге мы доказали, что числа с остатками 1 и 2 при делении на 3 не могут быть соседними.

Поскольку p1 = 2,  это означает, что после p1  стоят несколько чисел с остатком 2 при делении на 3, затем где-то стоит число 3. Если после тройки стоит число с остатком 2 при делении на 3, то все числа далее будут с таким же остатком и в последовательности простых чисел не будет ни одного числа с остатком 1 при делении на 3 (такие есть, например, число 7).

Следовательно, после тройки стоит число с остатком 1 при делении на 3 и все числа за ним имеют такой же остаток. Но тогда до тройки стоит лишь конечное число простых чисел с остатком 2 при делении на 3.

Предположим, что простых чисел вида 3k+ 2  конечное число. Обозначим все такие числа через q1,q2,...,ql.  Число 3q1q2...ql− 1  не делится на простые числа q1,q2,...,ql  и даёт остаток 2 при делении на 3. Значит среди его простых делителей должно быть число вида 3k+ 2  — противоречие.

Ответ: нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!