Тема . ТурГор (Турнир Городов)
Комбинаторика на устном туре Турнира Городов
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тургор (турнир городов)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#85519

У Вани есть клетчатая бумага двух видов: белая и чёрная. Он вырезает кусок из любой бумаги и наклеивает на серую клетчатую доску 45× 45,  делая так много раз. Какое минимальное число кусков нужно наклеить, чтобы «раскрасить» клетки доски в шахматном порядке? (Каждый кусок — набор клеток, в котором от любой клетки до любой другой можно пройти, переходя из клетки в соседнюю через их общую сторону. Можно наклеивать куски один поверх другого. Все клетки имеют размер 1× 1.)

Источники: Турнир городов - 2024, весенний тур, 11.6 (см. turgor.ru)

Подсказки к задаче

Подсказка 1

Когда сложно понять, как устроена наша конструкция, можно попробовать рассмотреть “маленькие” поля, со стороной 1,2 или 3, в них будет легче понять закономерность и прийти к мысли об оценке и примере.

Подсказка 2

Если мы увидели предположительную закономерность на маленьких числах, для оценки можно попытаться применить индукцию. Для того чтобы осуществить шаг индукции, можно воспользоваться тем, что шахматная доска состоит из большого числа отдельных белых и черных “кусочков”. Как это формализовать?

Подсказка 3

Шахматная раскраска означает, что при переходе в соседнюю по стороне клетку мы всегда меняем цвет. И для оценки можно как раз считать количество таких “смен цвета”, в данной задаче эта конструкция очень и очень поможет!

Показать ответ и решение

Оценка.

Можно считать, что первый наклеенный кусок — весь квадрат, от этого ничего не испортится. Считаем его нулевым. Докажем индукцией по k  утверждение:

_________________________________________________________________________________________________________________________________________________________________________________

После еще k  кусков между любыми двумя клетками есть путь с не более чем 2k  сменами цвета.

_________________________________________________________________________________________________________________________________________________________________________________

База при k= 0  верна.

_________________________________________________________________________________________________________________________________________________________________________________

Рассмотрим наклеивание k  -го куска S  . Пусть до этого между двумя клетками был путь с не более 2(k− 1)  сменами цвета. Если он не заходил в S  , то он таким и остался. Иначе заменим его кусок от первой его клетки в S  до последней такой клетки на путь по S  между этими клетками. Тогда количество смен цвета в новом пути увеличилось не более чем на 2 по сравнению со старым. Переход доказан.

_________________________________________________________________________________________________________________________________________________________________________________

В конце между противоположными углами любой путь имеет хотя бы 88 смен цвета. Значит, поверх нулевого куска наклеено еще хотя бы 44.

_________________________________________________________________________________________________________________________________________________________________________________

Пример.

Пусть верхний слой состоит из центральной клетки. Далее пусть каждый нижележащий слой состоит из клеток предыдущего слоя и из клеток, примыкающих к ним по стороне, и имеет противоположный цвет.

Ответ: 45

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!