Тема . ТурГор (Турнир Городов)
Тождественные преобразования и многочлены на устном туре Турнира Городов
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тургор (турнир городов)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#85505

Дано натуральное число n  . Можно ли представить многочлен x(x− 1)...(x − n)  в виде суммы двух кубов многочленов с действительными коэффициентами?

Источники: Турнир городов - 2024, весенний тур, 11.1 (см. turgor.ru)

Подсказки к задаче

Подсказка 1

Ну если доказывать, что для любого многочлена подобного вида он всегда разложим в сумму двух многочленов-кубов, то либо конструктивно предъявлять два таких многочлена(и как вы потом будете доказывать, что они тождественно равны, уж не раскрывать ли скобки?), либо как-то в общем случае говорить, но тоже абсолютно непонятно как. Тогда, если сложно доказать ответ «Да», попробуем доказать ответ «Нет». Тогда пусть он представим в виде суммы двух многочленов-кубов. Если бы у нас были вместо многочленов числа, то можно было бы посмотреть на делимость чего-то на что-то, так как слева у нас произведение из условия, а правую часть можно разложить как сумму кубов. Попробуйте это сделать, ведь вам ничего не мешает говорить про делимость, только уже многочлена на многочлен!

Подсказка 2

Ну множитель просто их суммы как-будто уже мало что может дать(в рамках нашей задачи, что сумма кубов, что просто сумма в смысле количества условий и чего-то, что можно из этого вывести, почти ничем не отличны, кроме того, что сумму кубов можно разложить), поэтому посмотрим на другую скобку, которая как мы знаем всегда больше нуля. Что тогда следует из этого?

Подсказка 3

Что эта скобка не разложима на линейные сомножители над R. То есть, ее нельзя представить в виде произведения скобок вида (x - k)^t. Осталось только посмотреть на степень неполного квадрата разности и на левую часть и понять, что мы решили задачу.

Показать ответ и решение

Предположим противное — существуют такие многочлены f  и g  , что выполнено тождество x(x− 1)...(x − n)= f3+ g3  .

_________________________________________________________________________________________________________________________________________________________________________________

Первое решение.

У многочленов f  и g  нет общих корней, иначе это будет кратный корень суммы кубов, а у многочлена x(x − 1)...(x− n)  кратных корней нет.

Тогда многочлен  2      2
f − fg +g  имеет степень 2max(degf,degg  ) (старшие коэффициенты не сократятся) и не имеет корней, поскольку выражение  2      2
a − ab+b  равно 0 только при a= b=0  . Но такого делителя у многочлена x(x− 1)...(x − n)  нет.

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение.

Применим формулу суммы кубов:

                     (         )
x(x− 1)...(x − n)= (f + g) f2− fg+g2 .

При x= 0,1,...,n  имеем 3       3
f(x)= −g(x)  , откуда f(x)= −g(x)  , то есть f(x)+ g(x)= 0  .

Значит, многочлен f + g  имеет корнями числа 0,1,2,...,n  , откуда его степень не меньше n +1  (поскольку он не тождественный ноль). В частности, у одного из многочленов f  и g  степень не меньше n +1  — не теряя общности, пусть у g  . Тогда, из равенства (*), степень многочлена f2− fg +g2  равна 0 , то есть это ненулевая константа. Но это невозможно, так как из представления f2− fg+ g2 =(f − 0,5g)2 +0,75g2  видно, что у этого многочлена старшая степень не меньше, чем максимум из степеней многочленов (f − 0,5g)2  и 0,75g2  , то есть, не меньше 2(n+ 1)  . (Можно сказать иначе: 0,75g2  принимает сколь угодно большие значения, откуда (f − 0,5g)2+ 0,75g2  - тоже, то есть, последний многочлен не может быть константой).

Ответ: нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!