Тема . СПБГУ
Теория чисел на СПБГУ: десятичная запись, оценка+пример, разные системы счисления
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела спбгу
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#87412

Решите уравнение в целых числах

 2   2     n
m + k = 2024 + 33

Источники: СПБГУ - 2024, 11.4 (см. olympiada.spbu.ru)

Подсказки к задаче

Подсказка 1

Тот факт, что у нас есть слагаемое, которое мало на что делится, говорит о том, что его, в теории, можно использовать при доказательстве в смысле рассмотрения делимости на его множители. Давайте, к тому же, заметим, что 2024 кратно 11 и будем рассматривать делимости на 11. Что вы можете сказать про делимость на 11 обеих частей при разных n? А при фиксированном n и разных m, k?

Подсказка 2

Возможные остатки квадратов mod 11 - это 0, 1, 3, 4 5, 9. Какие пары этих остатков в сумме дают 0(нам ведь нужна делимость на 11 левой части)? Только пара 0 - 0. Значит, что оба числа кратны 11, а значит левая часть кратна 11². Всегда ли кратна правая часть 11²? Если нет, то при каких n кратна 11²?

Подсказка 3

При n ≥ 2 первое слагаемое кратно 11², а 33 нет. Значит, кратность может быть только при n = 0 или n = 1. При n = 1, у нас правая часть превращается в 17 * 11². Значит, все таки есть кратность 11, а значит верны наши рассуждения про m и k. Но тогда мы можем представить их в виде 11t и сократить на 11², после чего, довести до ответа. А случай n = 0 - оставляется читателю в качестве упражнения.

Показать ответ и решение

Числа m  и k  являются целыми числами, следовательно, каждое из чисел m2  и k2  являются целыми, а значит, и их сумма   2  2
m  +k  является целыми числом, таким образом, число    n
2024 +33  также является целым, т.е. число     n
2024  целое, откуда n ≥0  .

_________________________________________________________________________________________________________________________________________________________________________________

Пусть n≥ 2  . Тогда     n
2024 + 33  делится на 11, поскольку каждое из чисел 2024 и 33 кратно 11, но не делится на  2
11  , т.к. первое слагаемое кратно  2
11  , а второе — нет.

Пусть число x  дает остаток 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 при делении на 11, тогда число  2
x  дает соответственно остаток 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1 при делении на 11. Докажем, что если хотя бы одно из чисел m  и k  не делится на 11, то и число  2   2
m  +k  не делится на 11.

Предположим обратное, тогда сумма остатков чисел m2  и k2  равна 11, следовательно, ровно одно из чисел m2  и k2  даёт четный остаток при делении 11, а значит, соответствующий квадрат даёт остаток 0 или 4 при делении на 11, но тогда второй остаток равен 0 или 7, что невозможно. Таким образом, каждое из чисел m  и k  кратно 11, следовательно, каждое из чисел m2  и k2  кратно 112  , таким образом, m2 +k2  кратно 112  , но 2024n +33  не кратно 112  .

_________________________________________________________________________________________________________________________________________________________________________________

Тогда n = 0  или n =1.

Пусть n= 1  . Тогда 2024n+ 33 =2024+ 33 =2057= 112 ⋅7  , следовательно, m2+ k2  кратно 112  , а значит, как мы показали выше, каждое из чисел m  и k  кратно 11. Пусть m = 11a  , k =11b  , где a  и b  являются целыми числами, следовательно, a2+ b2 =17  . Легко убедиться, что всеми решениями (a,b)  данного уравнения являются неупорядоченные пары (±1,±4).  Следовательно, все пары решений (m,k)  это (±11,±44)  , (±11,±44)  .

Пусть n= 0  . Тогда 2024n+ 33 =1 +33= 34  . Если каждое из чисел m  и k  не превосходит по модулю 4, то сумма их квадратов не превосходит 32, следовательно, наибольшее из чисел m  и k  по модулю не меньше 5. С другой стороны, если какое-то из чисел по модулю больше 5, то его квадрат не меньше 36, что невозможно. Таким образом, в паре чисел (m,k)  хотя бы одно равно 5 по модулю, тогда второе равно 3 по модулю. Тем самым, мы показали, что все пары решений (m,k)  есть (±5,±3)  , (±3,±5)  .

Ответ:

 (0;±3;5),(0;±3;− 5),(0;±5;3),(0;±5;−3),

(1;±11;44),(1;±11;−44),(1,±44;11),(1,±44;−11)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!