Тема . СПБГУ
Теория чисел на СПБГУ: десятичная запись, оценка+пример, разные системы счисления
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела спбгу
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80505

Дано натуральное число x  , десятичная запись которого состоит из n  цифр и не содержит нулей. Числа x  и x2  в десятичной системе одинаково читаются слева направо и справа налево. Найдите все n,  при которых такое x  существует.

Показать доказательство

Заметим, что

 2
1 = 1

112 = 121

1112 = 12321

...

        2
111111111 = 12345678987654321

Значит, n  от 1 до 9 подходит. Осталось доказать, что n≥ 10  не походит. Пусть x= an=1...a0  . Тогда x2 = b0+ 10b1 +...102n−2b2n  , где bk = a0ak +a1ak−1+...+aka0  для k < n  и bk =b2n−2−k  . Докажем, что bk ≤ 9  по индукции.

База: b0 = a20  . Значит, нам нужно доказать, что a0 ≤ 3  .

Если a0 =an =4  , то 5 ⋅5n−1 >x >4⋅10n−1  и 25 ⋅52n−2 > x2 > 16⋅102n−2  . Тогда последняя цифра у x2  будет 6, так как у x  последняя цифра 4, а первая цифра у x2  будет 1 или 2?! Аналогично для an = 5,6,...,9  .

Переход: Мы доказали, что b0,...bk− 1 ≤9  . Теперь докажем, что bk ≤9  . Мы знаем, последние k  цифр в x2  . Значит мы знаем и первые k  цифр. Заметим, что x2 < 42⋅102n−2  . Если x2 ≥ 102n−2  , то первая цифра у x2  может быть только 1, с другой стороны для этого x≥ 3⋅10n−1  , то есть у x  должна быть последняя цифра 3 и тогда у x2  последняя цифра 9?! Значит 102n− 1 > x2 >102n−2  .

   2n−2−k          2n−2−k
bk10      =b2n−2−k10      ≤

≤x2− b   102n−2− b   102n− 3− ...b      102n−1−k <102n−1− k
      2n−2        2n−3          2n−2−k+1

Отсюда bk < 10.

С другой стороны, bk ≥ k+1  для k≤ n− 1  . Значит, при n ≥10  число b9≥ 10  ?!

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!