Тема . Ломоносов
Комбинаторика на Ломоносове: способы, логика, игры
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#82785

Сколько точек пространства с целочисленными координатами принадлежат треугольнику с вершинами (3,4,5)  , (11,10,6)  , (5,8,9)  ? Точка на вершинах и сторонах тоже считаются.

Источники: Ломоносов - 2024, 11.8 (см. olymp.msu.ru)

Подсказки к задаче

Подсказка 1

Давайте немного упростим задачу и сдвинем одну из вершин в начало координат, чтобы числа стали попроще, для этого можно сделать параллельный перенос на вектор (-3;-4;-5), а как можно посчитать кол-во целочисленных точек на стороне?

Подсказка 2

Верно, кол-во целых точек (включая концы) на отрезке (x₁,y₁,z₁), (x₂,y₂,z₂), это НОД(|x₁-x₂|, |y₁-y₂|, |z₁-z₂|) + 1, итак, когда мы знаем кол-во точек на периметре треугольника, давайте перейдём к его внутренности, если взять произвольную целочисленную точку, можно ли получить какое-то следствие, которое было бы легче проверить, но оно бы оставило нам пару точек для перебора?

Подсказка 3

Да, можно сказать, что если точка A была подходящей, то точка A' полученная проецированием её на одну из плоскостей тоже будет подходить, а значит можно спроецировать весь треугольник, например, на плоскость Oxy и найти возможных кандидатов там, а потом проверить только их

Подсказка 4

Для проверки наших кандидатов можно составить систему уравнений из двух векторов, образующих стороны, с положительными коэффициентами, сумма которых меньше 1, чтобы получить точку внутри треугольника, остаётся проверить, что найдутся целые решения, которые бы удовлетворяли полученной системе

Подсказка 5

Для удобства можно выразить из первых двух уравнений коэффициенты и подставить их в третье уравнение, тогда останется лишь условие на координаты точек, но предыдущие ограничения всё ещё следует проверить

Показать ответ и решение

Перенесём треугольник одной вершиной в начало координат. Тогда его можно представлять как точку (0,0,0)  , из которой выходят вектора u =(8,6,1)  и v = (2,4,4)  .

Тогда внутренность треугольника можно представить как λu+ μv,  где λ,μ  — действительные числа, λ,μ >0,  и λ +μ <1.

Вопрос о целых точках на треугольнике, получается, стоит так: при каких целых n,m,k  система:

(|
||{8λ +2μ= n,
||6λ +4μ= m,
|(λ +4μ =k

имеет решения λ,μ  , удовлетворяющие условиям выше.

Мы выделили внутренность, потому что стороны легче рассмотреть отдельно. Три целочисленные вершины лежат в треугольнике по определению. На сторонах точки подсчитать тоже просто — стороны это вектора u= (8,6,1),v =(2,4,4),  и третья сторона (6,2,−3)  . Получить целочисленную точку можно только на середине вектора v  , а у остальных сторон нет общих делителей координат, и через целые точки они не проходят. Значит, на периметре лежат 3+ 1= 4  точки.

Переходим к внутренней части треугольника. Конечно, нет гарантий, что там будет хотя бы одна целочисленная точка — но если такая есть, то её проекции на координатные плоскости тоже будут целочисленные. Поэтому давайте рассмотрим проекцию треугольника на плоскость Oxy  , и отберём на ней потенциально подходящие пары (n,m ),  а после выкинем лишние.

Проецируем треугольник на Oxy  — получается треугольник на плоскости с вершинами (0,0),  (8,6),  (2,4).  Внутрь него точки попадут такие: (1,1),(2,2),(2,3),(3,3),(3,4),(4,4),(5,4),(6,5).

Решаем систему, состоящую из двух первых уравнений:

({
(8 λ+2μ =n,
  6λ+4μ =m

Получаем следующие решения:

    2n − m    −3n +4m
λ = -10--,μ= ---10---

Полученные значения λ,μ  подставляются в третье уравнение λ+ 4μ= k  , и если k  оказывается целым — точка найдена. После подстановки получается выражение:

     3
− n+ 2m =k,

то есть m  должна быть чётной. Из 8  кандидатов подойдут только 4:  (2,2),(3,4),(4,4),(5,4)  .

Плюс 4  точки на сторонах, и всего точек на треугольнике 4 +4 =8.

Ответ: 8

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!