Тема Ломоносов
Стереометрия на Ломоносове
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#67943

На подвешенном воздухе кубике Рубика, на одном из его 54  квадратиков, сидит жучок. В какой-то момент он начинает движение по поверхности куба, передвигаясь за каждую секунду на соседний квадратик, т.е. на квадратик, имеющий общую сторону с текущим. Соседний квадратик для первого перемещения был выбран произвольно, а затем жучок следовал таким правилам:

1) при 2-м, 4-м и других чётных перемещениях жучок не менял направления своего движения, т.е. покидал квадратик через сторону, противоположную той, через которую он на этот квадратик попал;

2) при 3-м, 5-м и других нечётных перемещениях жучок поворачивал направо (относительно своего движения).

Через 2023 секунды после начала движения жучок обратил внимание на то, что уже был на этом же квадратике 5 секунд назад. Через какое наименьшее число секунд после 2023-й жучок опять окажется на этом квадратике?

Источники: Ломоносов-2023, 10.7 (см. olymp.msu.ru)

Подсказки к задаче

Подсказка 1

Заметим, что квадратиков ну ооочень много, но ведь многие из них очень похожи?… Если взять конкретный квадратик, то несложно отследить его путь, т.к путь у жучка определяется начальным положением и направлением. Что тогда попробуем сделать?

Показать ответ и решение

Для отслеживания движения жучка будем использовать частичную развертку куба, покрывающую 3  грани. Каждый квадратик будем обозначать двузначным числом, 1-я и 2-я цифры которого являются соответствующими координатами центра квадратика на развертке (единица — ширина квадратика):

PIC

Маршрут жучка определяется его начальным положением и направлением его первого перемещения. Хотя всего таких вариантов 54× 4,  их все можно разбить на 9  принципиально различных групп:

1) Жучок стартует с центрального квадратика любой грани по направлению к любому ребру

2-3) Старт с углового квадратика любой грани, а первое перемещение в пределах той же грани вдоль ребра, идущего соответственно справа или слева от жучка

4-5) Старт с углового квадратика любой грани, а при первом перемещении жучок переползает на соседнюю грань, причем третья примыкающая грань остается соответственно справа или слева от него

6) Старт с приреберного квадратика любой грани по направлению к центру

7) Старт с приреберного квадратика любой грани с переходом на соседнюю грань при первом перемещении

8-9) Старт с приреберного квадратика любой грани, а первое перемещение в пределах той же грани вдоль ребра, идущего соответственно справа или слева от жучка

Заполним таблицу, в которой для каждой группы приведем пример маршрута в течение того времени, когда обнаруживается его периодичность, т.е. когда на какой-либо четной секунде жучок оказывается на начальном квадратике, а еще через 1  с — на квадратике, где он был через 1  с после начала движения.

В случае группы 1  выберем для старта квадратик 22  с первым перемещением 22−→ 23  и проследим весь маршрут, пока не обнаружим, что его период равен 24  c (1-я колонка таблицы после двойной вертикальной черты).

Заметим, что через 2  c после начала движения жучок окажется в начальном состоянии группы 8.  Поэтому для нее маршрут также будет иметь период 24  с и его можно получить из маршрута группы 1  сдвигом на 2  с.

Еще через 2  с жучок окажется в начальном состоянии группы 4.  Поэтому и для нее маршрут будет с периодом 24  с и его можно получить из маршрута группы 1  сдвигом на 4  с.

Еще через 2  с имеем начальное состояние группы 7  и получаем ее маршрут с периодом 24  с из маршрута группы 1  сдвигом на   6  с.

Для остальных групп получаются кольцевые маршруты с периодом 8  с, причем в течение одного периода жучок ни на одном квадратике не оказывается дважды.

PIC

Так как 2023≡ 7 mod 24  (остаток от деления 2023  на 24  равен 7  ) и 2023≡ 7 mod 8  (остаток от деления 2023  на 8  равен 7),  то через 2023  с после начала движения жучок окажется на том же квадратике, на котором он был через 7  с после начала, а за 5  с до этого — на том же квадратике, на котором он был через 2  с после начала.

Как видно из таблицы, такое совпадение имеет место только для группы 1  (квадратик 24).  Так как этот квадратик встречается на маршруте только дважды в течение периода (2  с и 7  с), следующее попадание на него произойдет через 2+ 24− 7= 19  (с).

Ответ: 19

Ошибка.
Попробуйте повторить позже

Задача 2#70490

Угол при вершине в осевом сечении конуса равен 60∘ . Снаружи этого конуса расположены 11 шаров радиуса 3, каждый из которых касается двух соседних шаров, боковой поверхности конуса и плоскости его основания. Найдите радиус основания конуса.

Источники: Ломоносов-2022, 11.4 (см. olymp.msu.ru)

Подсказки к задаче

Подсказка 1

Давайте сначала рассмотрим расположение любого шара и конуса в плоскости, перпендикулярной рисунку.

Подсказка 2

У нас есть треугольник, которого касается окружность известного радиуса, вписанная во внешний угол при основании треугольника. Счёт за Вами... Напоминаем, окружность, вписанная в угол, лежит на его биссектрисе

Подсказка 3

Теперь давайте поймем как расположены все шары снаружи. Они касаются друг друга, поверхности конуса и плоскости его основания, причем все расположены на одинаковом расстоянии от центра основания конуса!

Подсказка 4

То есть точки касания шаров с плоскостью основания конуса являются вершина правильного 11-угольника со стороной, равной удвоенному радиусу шаров(так как они касаются друг друга и длина = 2 радиуса)...

Подсказка 5

Теперь нам известны расстояние от центра основания до точки касания шаров с плоскостью основания(радиус 11-угольника) и расстояние от этой точки касания до ближайшей вершины треугольника в плоскости рисунка, тогда искомый радиус основания = радиус 11-угольника - последнее расстояние

Показать ответ и решение

PIC

Пусть O  — центр окружности основания конуса, радиуса R,Q1  - центр одного из шаров радиуса 3,H1  — точка касания этого шара с плоскостью основания, H2  — точка касания соседнего шара с плоскостью основания конуса. Значит, из треугольника AQ1H1  можем получить

AH1 =--(-Q1H1-∘) = 3√--=√3
     tg 45∘+ 302--    3

PIC

Так как каждый шар касается двух соседних, то точки касания этих шаров с плоскостью основания конуса расположены в вершинах правильного 11-угольника вписанного в окружность с центром в точке O,  радиуса OH1  и стороной, равной 2⋅3= 6.  Поэтому

            180∘-
Q1H =OH1 sin 11 , где OH1 = R+ AH1

     Q1H           3     √-
R = sin180∘-− AH1 = sin-180∘− 3
       11            11
Ответ:

---3--− √3
sin 18101∘

Ошибка.
Попробуйте повторить позже

Задача 3#63893

Отрезок AB = 8  пересекает плоскость α  под углом 30∘ и делится этой плоскостью в отношении 1:3  . Найдите радиус сферы, проходящей через точки A  и B  и пересекающей плоскость α  по окружности наименьшего радиуса.

Источники: Ломоносов-2015, 11.5 (см. olymp.msu.ru)

Показать ответ и решение

Обозначив точку пересечения AB  с плоскостью α  через C  , получим AC =2,BC = 6  . В пересечении сферы с плоскостью получается некоторая окружность. Проведём через C  диаметр MN  этой окружности. Тогда AB  и MN  — хорды сферы, и по свойству пересекающихся хорд: MC  ⋅CN = AC⋅CB = 12  . Так как                 √-------   √ -
MN  =MC  +CN  ≥2 MC  ⋅CN =4  3  , то минимальный радиус окружности больше или равен  √-
2 3  и значение √ -
2 3  достигается при            √-
MC = CN = 2 3  , то есть C− центр этой окружности. Так как          ∘                 ∘
∠COP = 90 − ∠OCP =∠NCP  = 30 , то OC = 2⋅CP.  При этом      AB-
CP =  2 − AC = 2.  Значит,  2     2     2     2      2
R  =OM   =MC   +OC  = 12 +4 = 28.

Ответ:

 2√7

Ошибка.
Попробуйте повторить позже

Задача 4#63895

В правильную треугольную призму ABCA  B C
     1 1 1  вписан шар радиуса √2  . Найдите площадь боковой поверхности вписанного в шар прямого кругового цилиндра, основание которого лежит в плоскости, проходящей через точку A  и середины рёбер BB1  и CC1.

Источники: Ломоносов-2014, 11.7 (см. olymp.msu.ru)

Показать ответ и решение

Обозначим через r  радиус шара, а через D,D ,M
   1  и N  — середины рёбер BC,B C ,BB
     11    1  и CC
   1  соответственно. Плоскость AA  D
   1 1  есть центральное сечение шара. Пусть h  — высота цилиндра, тогда радиус его основания равен     ∘-2--h2
R =  r − 4  . Пусть P  — точка пересечения отрезков DD1  и MN  . Справедливы соотношения OP = r,P D= r,AD =3r  , где O− центр шара. Если O1  — проекция точки O  на основание цилиндра, то из подобия прямоугольных треугольников APD  и OO1P  получаем

OO1   PD    OO1      r       1
OP--= AP-⇔  -r--= √9r2-+r2 = √10-.

Тогда        √--            √--
OO1 = r1100,h =2 ⋅OO1 = r510.  Значит,      √--
R= 3r1010  . Площадь боковой поверхности                2
Sбок. =2πRh = 6πr5-.

Ответ:

 12π
 5

Ошибка.
Попробуйте повторить позже

Задача 5#72980

В треугольной пирамиде SABC  ребро SA  перпендикулярно плоскости ABC,∠SCB = 90∘,BC = √5,AC =√7-  . Последовательность точек On  строится следующим образом: точка O1  — центр сферы, описанной около пирамиды SABC  , и для каждого натурального n ≥2  точка On  есть центр сферы, описанной около пирамиды On−1ABC  . Какую длину должно иметь ребро SA  , чтобы множество {On} состояло ровно из двух различных точек?

Подсказки к задаче

Подсказка 1

Т.к. SA ⊥ (ABC), то угол ∠SAB=90⁰. По условию ∠SCB=90⁰. Это означает, что наши точки лежат на сфере, с диаметром SB. А на какой прямой лежат центры O₁, O₂, ...?

Подсказка 2

Правильно, на перпендикуляре к плоскости (ABC), проведенной в точке X- середине AB. Мы хотим, чтобы множество наших центров состояло всего из двух точек. Давайте тогда поймем, когда O₃ совпадает с кем-то из O₁, O₂.

Подсказка 3

Ясно, что с O₂ она совпадать не может. Т.к. O₁- середина SB, то и O₃- середина SB. Т.к. O₃ равноудалена от A, B, C и O₂, а O₂ равноудалена от A, B, C и O₁=O₃, то AO₃BO₂- ромб с углом 60°. Я думаю, что вы сможете закончить решение!

Показать ответ и решение

PIC

 Применим теорему о трех перпендикулярах. В силу того, что SA ⊥ (ABC )  и SC ⊥ BC  , получим, что проекция SC  на плоскость (ABC )  перпендикулярна BC  , то есть AC ⊥ BC.

Заметим, что середина гипотенузы AB  - точка X  это центр описанной окружности прямоугольного треугольника △ACB  . Аналогично середина гипотенузы SB  - точка Y  - центр описанной окружности прямоугольного треугольника △SAB  . Тогда если провести перпендикуляр к плоскости (ABC )  в точке X  и перпендикуляр к плоскости (SAB)  в точке Y  , то центр описанной окружности O1  пирамиды SABC  - точка пересечения этих перпендикуляров. Но перпендикуляр к плоскости (ABC )  в точке X  совпадает с прямой XY  . То есть точка O1  и есть точка Y  .

При этом на прямой XY  (перпендикуляр к плоскости (ABC )  в точке X  ) будут лежать все On  в силу того, что XY  - ГМТ точек равноудаленных от A,B,C.

То есть точка O2  - центр треугольной пирамиды O1ABC  - опять-таки должна лежать на прямой XY.

PIC

Хотелось бы добиться того, чтобы O3 = O1  (O3 ⁄=O2  по очевидным причинам). Но тогда O3 = Y  . То есть середина гипотенузы △SAB  равноудалена от точек A,B,O2  . Так же точка O2  равноудалена от точек A,B,Y  . Но тогда AY BO2  должен быть ромбом, при этом его диагональ YO
   2  должна быть равна стороне. Понятно, что тогда ∠AY B = 120∘ . Значит, что ∠SBA = 30∘ , то есть SA = tan30∘⋅AB = 1√-⋅√AC2-+-BC2 = √1√2-=2.
                 3               3

Ответ:

 2

Рулетка
Вы можете получить скидку в рулетке!