Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68198

Точка O  — центр вписанной в треугольник ABC  окружности. Продолжение отрезка BO  за точку O  пересекает описанную вокруг треугольника ABC  окружность в точке D.  Найдите угол B,  если OD = 4AC.

Источники: Ломоносов - 2012, 11.5

Подсказки к задаче

Подсказка 1

Нам дали прямую, проходящую через центр вписанной окружности, которая пересекает описанную окружность треугольника. Какую тогда теорему можно вспомнить, связанную с такой конструкцией?

Подсказка 2

Верно, здесь можно применить лемму о трезубце. Откуда поймём, что OD = AD =CD. Теперь взглянем внимательно на условие. Нам дали отрезок AC=4OD, и выходит, мы знаем все стороны в равнобедренном треугольнике ACD. Вспомним ещё, что сумма противоположных углов в четырёхугольнике равна 180. Как отсюда можно попробовать найти угол B? Какую тогда теорему можно применить к равнобедренному треугольнику ADC?

Подсказка 3

Ага, давайте посчитаем ∠ADC по теореме косинусов. Но мы знаем, что ∠ABC = 180− ∠ADC. Осталось вспомнить, чему равен косинус смежного угла, и победа!

Показать ответ и решение

PIC

По лемме о трезубце OD = AD =CD.

Первое решение.

Если AC =a,  то AD = DO = 4a= CD.  Отсюда по теореме косинусов

             2    2  2
cos∠ADC = 16a-+16a-−-a-= 31
             2⋅4a⋅4a     32

Так как ABCD  — вписанный четырехугольник, то ∠ABC = 180∘− ∠ADC  и cos∠ABC = − 3312.  Значит, ∠ABC = arccos(− 3312).

Второе решение.

Пусть M  — середина AC  , тогда ∠DMC  =90∘ , потому что треугольник ACD  равнобедренный. Из условия OD = 4AC  получаем, что MC  =8DC  . Следовательно, ∠MDC  = arcsin1
            8  . Далее нетрудно посчитать:

∠ABC  =180∘− ∠ADC = 180∘− 2∠MDC  =

                             (    )
= 180∘− 2arcsin 1= 2arccos 1= arccos  − 31
             8        8         32
Ответ:

 2arccos1 =arccos(− 31)
      8         32

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!