Тема . ОММО (Объединённая Межвузовская Математическая Олимпиада)
Теория чисел на ОММО
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#37485

При каком наименьшем n  существуют n  чисел из интервала (−1;1)  , таких, что их сумма равна 0  , а сумма их квадратов равна 30  ?

Источники: ОММО-2020, номер 2, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1!

1) Так, нужно выбрать сколько-то чисел, модуль которых меньше единицы... Давайте сделаем самую просящуюся на ум оценку суммы квадратов таких маленьких чисел! Сколько их должно быть минимум? Давайте используем, что их модули маленькие!

Подсказка 2!

2) Тааааак, 30 точно должно быть, но как-то 30 не получается, так как у нас интервал. Может, получится 31... Попробуйте! Ага, это число нечетное... Что можно из этого заключить?

Подсказка 3!

3) Кажется, с 31 не получается построить пример. Давайте докажем, почему? Да-да, либо положительных, либо отрицательных меньше 15! А так как их сумма должна быть 0, как бы из этого получить, что сумма квадратов не получится 30?

Подсказка 4!

4) Отлично, осталось дело за малым, построить пример!

Показать ответ и решение

Заметим, что чисел больше 30  , поскольку сумма квадратов меньше суммы модулей, которая меньше 30  .

Пусть чисел 31  . Тогда, не умаляя общности, отрицательных не больше 15  , то есть их сумма меньше 15  по модулю, как и сумма положительных (которая ей равна), откуда сумма их квадратов снова меньше 30  .

То есть чисел хотя бы 32  . В качестве примера рассмотрим числа   ∘-15-
±   16  (по 16  каждого вида).

Ответ:

 32

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!