Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела четырёхугольники
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#86088

В трапеции ABCD

                 ∘          ∘
AD ∥BC, ∠ABC = 125, ∠CDA = 70

Докажите, что AD = BC +CD.

Показать доказательство

Первое решение.

В силу параллельности AD ||BC :

          ∘           ∘    ∘    ∘
∠BAD  =180 − ∠ABC = 180 − 125  =55

Отложим от точки A  отрезок AK = BC.

PIC

Тогда ABCK  — параллелограмм (т. к. AK ||BC,  AK = BC ),  а CK||AB.

Значит, ∠CKD = ∠BAD = 55∘,  как односторонние углы при секущей AD  .

Найдем угол ∠KCD :

∠KCD = 180∘ − ∠CKD − ∠CDK = 55∘

Получили, что                 ∘
∠KCD  =∠CKD  = 55.  Тогда △KDC  — равнобедренный, в котором KD  =CD  .

В итоге,

AD =AK + KD = BC + CD

______________________________________________________________________________________________________________________________________________________

Второе решение.

PIC

Отложим на прямой BC  за точку C  отрезок CP,  равный CD.

Т.к. AD ∥BC, ∠ABC = 125∘, ∠CDA = 70∘,  можем получить

        ∘          ∘
∠BAD = 55 ,∠DCP = 70

Треугольник DCP  равнобедренный, т.к. CD = CP,  поэтому

              180∘− ∠DCP-   ∘
∠CDP = ∠CPD =      2     = 55

Получаем, что

                        ∘
∠ADP  =∠CDA  +∠CDP  =125

Следовательно, ∠BAD + ∠CDA = 180∘,  значит, AB ∥DP.  Но мы знаем, что AD ∥ BC,  поэтому ABPD  — параллелограмм. Значит,

AD =BP = BC + CP =BC + CD

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!