Тема 12. Исследование функций с помощью производной
12.07 Поиск наибольшего/наименьшего значения у элементарных функций
Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела исследование функций с помощью производной
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#32314

Найдите наибольшее значение функции y = 15 +12x+ x3  на отрезке [−2;2].

Показать ответ и решение

Функция определена при всех x ∈ℝ  . Исследуем функцию и найдем ее промежутки возрастания и убывания, для этого найдем ее производную:

 ′       2
y= 12+ 3x

Найдем нули производной:

 ′             2
y =0  ⇒   3(4+ x )= 0 ⇔   x∈ ∅

Нули производной и точки, в которых она не существует, разбивают область определения производной на промежутки, на каждом из которых она непрерывна и принимает значения одного знака. В нашем случае производная таковых точек не имеет, следоваитетно, всюду принимает значения одного знака, а именно y′(x) >0  для всех x ∈ℝ  (это можно проверить, подставив, например, x= 0  ). Следовательно, функция возрастает на всем ℝ  , значит, на отрезке [−2;2]  наибольшее значение достигается в конце отрезка, то есть в точке x =2  , и оно равно

               3
y(2)= 15+ 12⋅2+ 2 =47.
Ответ: 47

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное обучение
в Школково

Для детей ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Брянской областей, а также школьникам, находящимся в пунктах временного размещения Крыма обучение на платформе бесплатное.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ или олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!